Skip to main content

Advertisement

Log in

Alterations of sexual behavior and plasma concentrations of pituitary/gonadal hormones after early-life exposure of mice to cypermethrin

  • Published:
Neurophysiology Aims and scope

Early-life environmental exposure to pesticides can cause reproductive, behavioral, and neurochemical defects in adulthood. Cypermethrin is a pyrethroid widely used throughout the world. Our study was aimed at elucidation of the effects of early-life exposure to cypermethrin on sexual behavior and plasma levels of pituitary/gonadal hormones in adult male mice. Cypermethrin in doses of 5, 10, or 15 mg/kg was i.p. administered to male pups from the 5nd to 10th postnatal day (PND). At PND 70, sexual behavioral phenomena (sniffing, following, mounting, and coupling) of adult male mice were tested using receptive female mice. After behavioral assessment, the animals were sacrificed, and plasma concentrations of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured using the ELISA technique. Our results showed that cypermethrin-treated groups exhibited significantly suppressed sexual behavior (all assessed manifestations) and noticeably lower serum concentrations of testosterone and LH, when compared with the control group. The FSH level underwent insignificant changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Aldridge, “An assessment of the toxicological properties of pyrethroids and their neurotoxicity,” CRC Crit. Rev. Toxicol., 21, 89-104 (1990).

    Article  CAS  Google Scholar 

  2. J. Solati, R. Hajikhani, and R. T. Zaeim, “Effects of cypermethrin on sexual behaviour and plasma concentrations of pituitary-gonadal hormones,” Int. J. Fertil. Steril., 4, 23-28 (2010).

    Google Scholar 

  3. M. A. Asari, M. S. Abdullah, and S. Abdullah, “Effect of early neonatal exposure to deltamethrin on the purkinje cell number in rat cerebellum,” Malays. J. Med. Sci., 15, 14-21 (2008).

    PubMed  Google Scholar 

  4. A. Gupta, R. Agarwal, and G. S. Shukla, “Functional impairment of blood-brain barrier following pesticide exposure during early development in rats,” Human Exp. Toxicol., 18, 174 (1999).

    Article  CAS  Google Scholar 

  5. T. Schettgen, U. Heudorf, and H. Drexler, “Pyrethroid exposure of the general population is this due to diet,” Toxicol. Lett., 134, 141-145 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. C. Lu, D. B. Barr, M. Pearson, et al., “A longitudinal approach to assessing urban and suburban children’s exposure to pyrethroid pesticides,” Environment. Health Perspect., 114, 1419 (2006).

    Article  CAS  Google Scholar 

  7. R. Verschoyleand and W. Aldridge, “Structure-activity relationships of some pyrethroids in rats,” Arch. Toxicol., 45, 325-329 (1980).

    Article  Google Scholar 

  8. D. M. Soderlund, “Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances,” Arch. Toxicol., 1-17 (2011).

  9. S. C. Joshi, B. Bansal, and N. D. Jasuja, “Evaluation of reproductive and developmental toxicity of cypermethrin in male albino rats,” Toxicol. Environ Chem., 93, 593-602 (2011).

    Article  CAS  Google Scholar 

  10. S. Sahaand and A. Kaviraj, “Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms,” Bull. Environment. Contamin. Toxicol., 80, 49-52 (2008).

    Article  Google Scholar 

  11. H. Viberg, W. Mundy, and P. Eriksson, “Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis,” Neurotoxicology, 29, 152-159 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. T. J. Shafer, D. A. Meyer, and K. M. Crofton, “Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs,” Environ. Health Perspect., 113, 123 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. U. Meyer, M. Nyffeler, B. Yee, et al., “Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice,” Brain, Behav., Immun., 22, 469-486 (2008).

    Article  CAS  Google Scholar 

  14. M. Asiaei, J. Solati, and A. A. Salari, “Prenatal exposure to lps leads to long-lasting physiological consequences in male offspring,” Dev. Psychobiol., (2011).

  15. S. C. Heinrichs, H. Min, S. Tamraz, et al., “Antisexual and anxiogenic behavioral consequences of corticotropin-releasing factor overexpression are centrally mediated,” Psychoneuroendocrinology, 22, 215-224 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. U. Meyerand and J. Feldon, “Epidemiology-driven neurodevelopmental animal models of schizophrenia,” Prog. Neurobiol., 90, 285-326 (2010).

    Article  Google Scholar 

  17. S. Bolden, J. Hambley, G. Johnston, and L. Rogers, “Neonatal stress and long-term modulation of GABA receptors in rat brain,” Neurosci. Lett., 111, 258-262 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. T. Narahashi, “Nerve membrane ionic channels as the target of toxicants,” Arch. Toxicol., 9, Suppl. 3 (1986).

    Google Scholar 

  19. K. M. Crofton, L. W. Reiter, and R. B. Mailman, “Pyrethroid insecticides and radioligand displacement from the GABA receptor chloride ionophore complex,” Toxicol. Lett., 35, 183-190 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. R. G. Paredesand and A. Agmo, “GABA and behavior: the role of receptor subtypes,” Neurosci. Biobehav. Rev., 16, 145-170 (1992).

    Article  Google Scholar 

  21. A. Fernández-Guasti, G. Roldan-Roldan, and A. Saldivar, “Pharmacological manipulation of anxiety and male rat sexual behavior,” Pharmacol. Biochem. Behav., 35, 263-267 (1990).

    Article  PubMed  Google Scholar 

  22. S. T. Nett, J. C. Jorge-Rivera, M. Myers, et al., “Properties and sex-specific differences of GABAA receptors in neurons expressing γ1 subunit mRNA in the preoptic area of the rat,” J. Neurophysiol., 81, 192-203 (1999).

    PubMed  CAS  Google Scholar 

  23. H. De Souza Spinosa, Y. M. A. Silva, A. A. Nicolau, et al., “Possible anxiogenic effects of fenvalerate, a type II pyrethroid pesticide, in rats,” Physiol. Behav., 67, 611-615 (1999).

    Article  PubMed  Google Scholar 

  24. D. E. Ray, D. Ray, and P. J. Forshaw, “Pyrethroid insecticides: poisoning syndromes, synergies, and therapy,” Clin. Toxicol., 38, 95-101 (2000).

    Article  CAS  Google Scholar 

  25. A. Elbetieha, S. Da’as, W. Khamas, and H. Darmani, “Evaluation of the toxic potentials of cypermethrin pesticide on some reproductive and fertility parameters in the male rats,” Arch. Environment. Contamin. Toxicol., 41, 522-528 (2001).

    Article  CAS  Google Scholar 

  26. M. Yousef, F. El. Demerdash, and K. Al. Salhen, “Protective role of isoflavones against the toxic effect of cypermethrin on semen quality and testosterone levels of rabbits,” J. Environ. Sci. Health, Part B, 38, 463-478 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Solati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solati, J. Alterations of sexual behavior and plasma concentrations of pituitary/gonadal hormones after early-life exposure of mice to cypermethrin. Neurophysiology 44, 229–233 (2012). https://doi.org/10.1007/s11062-012-9291-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9291-z

Keywords

Navigation