, Volume 44, Issue 3, pp 229–233 | Cite as

Alterations of sexual behavior and plasma concentrations of pituitary/gonadal hormones after early-life exposure of mice to cypermethrin


Early-life environmental exposure to pesticides can cause reproductive, behavioral, and neurochemical defects in adulthood. Cypermethrin is a pyrethroid widely used throughout the world. Our study was aimed at elucidation of the effects of early-life exposure to cypermethrin on sexual behavior and plasma levels of pituitary/gonadal hormones in adult male mice. Cypermethrin in doses of 5, 10, or 15 mg/kg was i.p. administered to male pups from the 5nd to 10th postnatal day (PND). At PND 70, sexual behavioral phenomena (sniffing, following, mounting, and coupling) of adult male mice were tested using receptive female mice. After behavioral assessment, the animals were sacrificed, and plasma concentrations of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured using the ELISA technique. Our results showed that cypermethrin-treated groups exhibited significantly suppressed sexual behavior (all assessed manifestations) and noticeably lower serum concentrations of testosterone and LH, when compared with the control group. The FSH level underwent insignificant changes.


pesticides, cypermethrin sexual behavior testosterone, lutenizing hormone, folliclestimulating hormone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Aldridge, “An assessment of the toxicological properties of pyrethroids and their neurotoxicity,” CRC Crit. Rev. Toxicol., 21, 89-104 (1990).CrossRefGoogle Scholar
  2. 2.
    J. Solati, R. Hajikhani, and R. T. Zaeim, “Effects of cypermethrin on sexual behaviour and plasma concentrations of pituitary-gonadal hormones,” Int. J. Fertil. Steril., 4, 23-28 (2010).Google Scholar
  3. 3.
    M. A. Asari, M. S. Abdullah, and S. Abdullah, “Effect of early neonatal exposure to deltamethrin on the purkinje cell number in rat cerebellum,” Malays. J. Med. Sci., 15, 14-21 (2008).PubMedGoogle Scholar
  4. 4.
    A. Gupta, R. Agarwal, and G. S. Shukla, “Functional impairment of blood-brain barrier following pesticide exposure during early development in rats,” Human Exp. Toxicol., 18, 174 (1999).CrossRefGoogle Scholar
  5. 5.
    T. Schettgen, U. Heudorf, and H. Drexler, “Pyrethroid exposure of the general population is this due to diet,” Toxicol. Lett., 134, 141-145 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Lu, D. B. Barr, M. Pearson, et al., “A longitudinal approach to assessing urban and suburban children’s exposure to pyrethroid pesticides,” Environment. Health Perspect., 114, 1419 (2006).CrossRefGoogle Scholar
  7. 7.
    R. Verschoyleand and W. Aldridge, “Structure-activity relationships of some pyrethroids in rats,” Arch. Toxicol., 45, 325-329 (1980).CrossRefGoogle Scholar
  8. 8.
    D. M. Soderlund, “Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances,” Arch. Toxicol., 1-17 (2011).Google Scholar
  9. 9.
    S. C. Joshi, B. Bansal, and N. D. Jasuja, “Evaluation of reproductive and developmental toxicity of cypermethrin in male albino rats,” Toxicol. Environ Chem., 93, 593-602 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Sahaand and A. Kaviraj, “Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms,” Bull. Environment. Contamin. Toxicol., 80, 49-52 (2008).CrossRefGoogle Scholar
  11. 11.
    H. Viberg, W. Mundy, and P. Eriksson, “Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis,” Neurotoxicology, 29, 152-159 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    T. J. Shafer, D. A. Meyer, and K. M. Crofton, “Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs,” Environ. Health Perspect., 113, 123 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    U. Meyer, M. Nyffeler, B. Yee, et al., “Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice,” Brain, Behav., Immun., 22, 469-486 (2008).CrossRefGoogle Scholar
  14. 14.
    M. Asiaei, J. Solati, and A. A. Salari, “Prenatal exposure to lps leads to long-lasting physiological consequences in male offspring,” Dev. Psychobiol., (2011).Google Scholar
  15. 15.
    S. C. Heinrichs, H. Min, S. Tamraz, et al., “Antisexual and anxiogenic behavioral consequences of corticotropin-releasing factor overexpression are centrally mediated,” Psychoneuroendocrinology, 22, 215-224 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    U. Meyerand and J. Feldon, “Epidemiology-driven neurodevelopmental animal models of schizophrenia,” Prog. Neurobiol., 90, 285-326 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Bolden, J. Hambley, G. Johnston, and L. Rogers, “Neonatal stress and long-term modulation of GABA receptors in rat brain,” Neurosci. Lett., 111, 258-262 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Narahashi, “Nerve membrane ionic channels as the target of toxicants,” Arch. Toxicol., 9, Suppl. 3 (1986).Google Scholar
  19. 19.
    K. M. Crofton, L. W. Reiter, and R. B. Mailman, “Pyrethroid insecticides and radioligand displacement from the GABA receptor chloride ionophore complex,” Toxicol. Lett., 35, 183-190 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    R. G. Paredesand and A. Agmo, “GABA and behavior: the role of receptor subtypes,” Neurosci. Biobehav. Rev., 16, 145-170 (1992).CrossRefGoogle Scholar
  21. 21.
    A. Fernández-Guasti, G. Roldan-Roldan, and A. Saldivar, “Pharmacological manipulation of anxiety and male rat sexual behavior,” Pharmacol. Biochem. Behav., 35, 263-267 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    S. T. Nett, J. C. Jorge-Rivera, M. Myers, et al., “Properties and sex-specific differences of GABAA receptors in neurons expressing γ1 subunit mRNA in the preoptic area of the rat,” J. Neurophysiol., 81, 192-203 (1999).PubMedGoogle Scholar
  23. 23.
    H. De Souza Spinosa, Y. M. A. Silva, A. A. Nicolau, et al., “Possible anxiogenic effects of fenvalerate, a type II pyrethroid pesticide, in rats,” Physiol. Behav., 67, 611-615 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    D. E. Ray, D. Ray, and P. J. Forshaw, “Pyrethroid insecticides: poisoning syndromes, synergies, and therapy,” Clin. Toxicol., 38, 95-101 (2000).CrossRefGoogle Scholar
  25. 25.
    A. Elbetieha, S. Da’as, W. Khamas, and H. Darmani, “Evaluation of the toxic potentials of cypermethrin pesticide on some reproductive and fertility parameters in the male rats,” Arch. Environment. Contamin. Toxicol., 41, 522-528 (2001).CrossRefGoogle Scholar
  26. 26.
    M. Yousef, F. El. Demerdash, and K. Al. Salhen, “Protective role of isoflavones against the toxic effect of cypermethrin on semen quality and testosterone levels of rabbits,” J. Environ. Sci. Health, Part B, 38, 463-478 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Department of Biology, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations