Advertisement

Neurophysiology

, Volume 43, Issue 4, pp 324–326 | Cite as

Integration of Grafted Neural Progenitor Cells in a Host Hippocampal Circuitry after Ischemic Injury

  • O. M. Tsupykov
  • A. O. Poddubnaya
  • K. G. Smozhanyk
  • V. M. Kyryk
  • O. V. Kuchouk
  • G. M. Butenko
  • E. A. Semenova
  • T. A. Pivneva
  • G. G. Skibo
Article
  • 39 Downloads

The induction of development of neurons and glial cells from neural progenitor cells (NPCs) is at present considered a promising strategy for recoverу after ischemic insult-evoked damage to the brain. To estimate whether grafted NPCs can develop morphological properties of the mature neurons and become functionally integrated within a host hippocampal circuitry, immunohistochemical approaches at the light and electron microscopy levels have been used. Ischemic insult in FVB-strain mice was evoked by 20-min-long occlusion of both carotid arteries. One day after occlusion, NPCs from GFP-transgenic fetuses were suboccipitally transplanted into the ischemic brain. We found that 44.7 ± 3.8% (mean ± s.e.m) of the grafted GFP-positive cells differentiated 3 months after transplantation into cells demonstrating morphological features of hippocampal pyramidal neurons. Moreover, grafted cells demonstrated manifestations of rather intense formation of the synapses between host and donor neural cells. Thus, our observations show that the NPC-based transplantation approach may be promising in the treatmen t of ischemic insult.

Keywords

neural progenitor cells transplantation ischemia electron microscopy synapse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kollmar and S. Schwab, “Ischaemic stroke: acute management, intensive care, and future perspectives,” Br. J. Anaesth., 99, No. 1, 95–101 (2007).PubMedCrossRefGoogle Scholar
  2. 2.
    K. Jeyaseelan, K. Y. Lim, and A. Armugam, “Neuroprotectants in stroke therapy,” Expert. Opin. Pharmacother., 9, No. 6, 887–900 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    B. A. Williams and A. Keating, “Cell therapy for agerelated disorders: myocardial infarction and stroke – a mini-review,” Gerontology, 54, No. 5, 300–311 (2008).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Kondziolka, L. Wechsler, S. Goldstein, et al., “Transplantation of cultured human neuronal cells for patients with stroke,” Neurology, 55, No. 4, 565–569 (2000).PubMedGoogle Scholar
  5. 5.
    S. I. Savitz, J. H. Dinsmore, L. R .Wechsler, et al., “Cell therapy for stroke,” NeuroRx., 1, No. 4, 406–414 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Haas, N. Weidner, and J. Winkler, “Adult stem cell therapy in stroke,” Curr. Opin. Neurol., 18, No. 1, 59–64 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Jenny, M. Kanemitsu, O. Tsupykov, et al., “Fibroblast growth factor-2 overexpression in transplanted neural progenitors promotes perivascular cluster formation with a neurogenic potential,” Stem Cells, 27, No. 6, 1309–1317 (2009).PubMedCrossRefGoogle Scholar
  8. 8.
    V. Darsalia, T. Kallur, and Z. Kokaia, “Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum,” Eur. J. Neurosci., 26, 605–614 (2007).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Wonga, H. Hodgesb, and K. Horsburgh, “Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia,” Brain Res., 1063, 140–150 (2005).CrossRefGoogle Scholar
  10. 10.
    O. M. Tsupykov, T. A. Pivneva, A. O. Poddubna, et al., “Migration and differentiation of fetal neural progenitor cells in the brain of ischemic animals,” Fiziol. Zh., 55, No. 4, 41–49 (2009).PubMedGoogle Scholar
  11. 11.
    H. Zhang, L. Vutskits, M. S. Pepper, et al., “VEGF is a chemoattractant for FGF-2-stimulated neural progenitors,” J. Cell Biol., 163, 1375–1384 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Toda, J. Takahashi, H. Mizoguchi, et al., “Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro,” Exp. Neurol., 165, 66–76 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Van Praag, A.F. Schinder, B.R. Christie, et al., “Functional neurogenesis in the adult hippocampus,” Nature, 415, 1030–1034 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • O. M. Tsupykov
    • 1
  • A. O. Poddubnaya
    • 1
  • K. G. Smozhanyk
    • 1
  • V. M. Kyryk
    • 2
  • O. V. Kuchouk
    • 2
  • G. M. Butenko
    • 2
  • E. A. Semenova
    • 3
  • T. A. Pivneva
    • 1
  • G. G. Skibo
    • 1
  1. 1.Bogomolets Institute of Physiology, National Academy of Sciences of UkraineKyivUkraine
  2. 2.State Institute of Genetic and Regenerative MedicineNational Academy of Medical Sciences of UkraineKyivUkraine
  3. 3.University College LondonLondonGreat Britain

Personalised recommendations