, Volume 42, Issue 4, pp 233–238 | Cite as

Importance of Cationic Channels for Functioning of the Nuclear Envelope of Neurons as a Calcium Store

  • E. A. Fedorenko
  • S. M. Marchenko

The membrane of the endoplasmic reticulum is, in fact, an extension of the nuclear envelope of eukaryotic cells; both these compartments can fulfill the function of intracellular calcium stores. Using a patch-clamp technique, we studied the biophysical properties of the channels expressed in the inner nuclear membrane of pyramidal neurons of the rat hippocampal CA1 area, in particular of large-conductance cationic channels and calcium channels of inositol trisphosphate receptors (the main channels in membranes of this type). As the results of the measurements showed, the activity of channels of both types demonstrates clearly pronounced voltage dependences. The probability of their open state (P o) depends on the voltage inside the nuclear envelope lumen. At positive potentials, the activity of these channels is significantly more intense than at negative potentials. Moreover, channels of both types are reversibly blocked at considerable negative potentials. We believe that this property of ion channels in the nuclear envelope is an important factor responsible for the control of calcium signals in the cell nucleus. We propose a hypothesis on the mechanism underlying termination of Ca2+ release from such intracellular stores, which is based on the specificity of the voltage dependence of ion channels of the above-mentioned types.


hippocampal pyramidal neurons nuclear envelope endoplasmic reticulum calcium stores inositol trisphosphate receptors large-conductance cationic channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Cutsuridis and T. Wennekers, “Hippocampus, microcircuits and associative memory,” Neural Netw., 22, No. 8, 1120-1128 (2009).CrossRefPubMedGoogle Scholar
  2. 2.
    J. G. Howland and Y. T. Wang, “Synaptic plasticity in learning and memory: stress effects in the hippocampus,” Prog. Brain Res., 169, 145-158 (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    A. M. Doherty, J. D. Jane, K. Cho, et al., “Neuronal calcium sensors and synaptic plasticity,” Biochem. Soc. Trans., 37, No. 6, 1359-1363 (2009).CrossRefPubMedGoogle Scholar
  4. 4.
    W. A. Catterall and A. P. Few, “Calcium channel regulation and presynaptic plasticity,” Neuron, 59, No. 6, 882-901 (2008).CrossRefPubMedGoogle Scholar
  5. 5.
    M. Costa-Mattioli, D. Gobert, H. Harding, et al., “Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2,” Nature, 436 (7054), No. 25, 1166-1173 (2005).CrossRefGoogle Scholar
  6. 6.
    D. J. Linden, “A protein synthesis-dependent late phase of cerebellar long-term depression,” Neuron, 17, 483-490 (1996).CrossRefPubMedGoogle Scholar
  7. 7.
    S. Chawla, “Regulation of gene expression by Ca2+ signals in neuronal cells,” Eur. J. Pharmacol., 447, Nos. 2/3, 131-140 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    S. A. Josselyn and P. V. Nguyen, “CREB, synapses and memory disorders: past progress and future challenges,” Curr. Drug. Targets. CNS Neurol. Disord., 4, No. 5, 481-497 (2005).CrossRefPubMedGoogle Scholar
  9. 9.
    G. E. Hardingham, F. J. Arnold, and H. Bading, “Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity,” Nat. Neurosci., 4, No. 3, 261-267 (2001).CrossRefPubMedGoogle Scholar
  10. 10.
    H. Bading, “Transcription-dependent neuronal plasticity: the nuclear calcium hypothesis,” Eur. J. Biochem., 267, No. 17, 5280-5283 (2000).CrossRefPubMedGoogle Scholar
  11. 11.
    K. Limback-Stokin, E. Korzus, R. Nagaoka-Yasuda, et al., “Nuclear calcium/calmodulin regulates memory consolidation,” J. Neurosci., 24, No. 1, 10858-10867 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    E. A. Fedorenko, D. E. Duzhii, and S. M. Marchenko, “Calcium channels in the nuclear envelope of pyramidal neurons of the rat hippocampus,” Neurophysiology, 40, No. 4, 238-242 (2008).CrossRefGoogle Scholar
  13. 13.
    G. Guihard, S. Proteau, M. D. Payet, et al., “Patch-clamp study of liver nuclear ionic channels reconstituted into giant proteoliposomes,” FEBS Lett., 476, 234-241 (2000).CrossRefPubMedGoogle Scholar
  14. 14.
    E. Rousseau, C. Michaud, D. Lefebvre, et al., “Reconstitution of ionic channels from inner and outer membranes of mammalian cardiac nuclei,” Biophys J., 70, No. 2, 703-714 (1996).CrossRefPubMedGoogle Scholar
  15. 15.
    S. M. Marchenko, “Spontaneously active ion channels of membranes of the nuclear envelope of hippocampal pyramidal neurons,” Neurophysiology, 39, No. 1, 1-6 (2007).CrossRefGoogle Scholar
  16. 16.
    M. Mazzanti, L. J. DeFelice, J. Cohn, and H. Malter, “Ion channels in the nuclear envelope,” Nature, 22, No. 343(6260), 764-767 (1990).CrossRefGoogle Scholar
  17. 17.
    E. Rousseau, C. Michaud, D. Lefebvre, et al., “Reconstitution of ionic channels from inner and outer membranes of mammalian cardiac nuclei,” Biophys. J., 70, No. 2, 703-714 (1996).CrossRefPubMedGoogle Scholar
  18. 18.
    A. Draguhn, G. Borner, R. Beckmann, et al., “Largeconductance cation channels in the envelope of nuclei from rat cerebral cortex,” J. Membr. Biol., 158, No. 2, 159-166 (1997).CrossRefPubMedGoogle Scholar
  19. 19.
    A. Franco-Obergon, H. Wang, and D. E. Clapham, “Distinct ion channel classes are expressed on the outer nuclear envelope of T- and B-lymphocyte cell lines,” Biophys. J., 79, 202-214 (2000).CrossRefGoogle Scholar
  20. 20.
    S. M. Marchenko, V. V. Yarotskyy, T. N. Kovalenko, et al., “Spontaneously active and InsP3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurons,” J. Physiol., 565, No. 15, 897-910 (2005).CrossRefPubMedGoogle Scholar
  21. 21.
    I. Bezprozvanny, “The inositol 1,4,5-trisphosphate receptors,” Cell Calcium, 38, 261-272 (2005).CrossRefPubMedGoogle Scholar
  22. 22.
    J. P. Humbert, N. Matter, J. C. Artault, et al., “Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate,” J. Biol. Chem., 271, No. 1, 478-485 (1996).CrossRefPubMedGoogle Scholar
  23. 23.
    E. A. Fedorenko, D. E. Duzhii, and S. M. Marchenko, “Voltage dependence of the activity of inositol trisphosphate receptors of the nuclear envelope of hippocampal pyramidal neurons,” Neurophysiology, 41, No. 5, 303-306 (2009).CrossRefGoogle Scholar
  24. 24.
    O. V. Gerasimenko, J. V. Gerasimenko, A. V. Tepikin, et al., “ATP dependent accumulation and inositol trisphosphateor cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope,” Cell, 80, No. 3, 439-444 (1995).CrossRefPubMedGoogle Scholar
  25. 25.
    M. Iino, “Molecular basis of spatio-temporal dynamics in inositol 1,4,5-trisphosphate-mediated Ca2+ signalling,” Jpn. J. Pharmacol., 82, No. 1, 15-20 (2000).CrossRefPubMedGoogle Scholar
  26. 26.
    M. D. Bootman, P. Lipp, and M. J. Berridge, “The organization and functions of local Ca2+ signals,” J. Cell Sci., 114, 2213-2222 (2001).PubMedGoogle Scholar
  27. 27.
    M. J. Berridge, “Elementary and global aspects of calcium signaling,” J. Exp. Biol., 200, 315-319 (1997).PubMedGoogle Scholar
  28. 28.
    M. Yamashita, M. Sugioka, and Y. Ogawa, “Voltage- and Ca2+-activated potassium channels in Ca2+ store control Ca2+ release,” FEBS J., 273, 3585-3597 (2006).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Yamashita, “‘Quantal’ Ca2+ release reassessed – a clue to oscillation and synchronization,” FEBS Lett., 580, 4979-4983 (2006).CrossRefPubMedGoogle Scholar
  30. 30.
    O. Baumann and B. Walz, “Endoplasmic reticulum of animal cells and its organization into structural and functional domains,” Int. Rev. Cytol., 205, 149-214 (2001).CrossRefPubMedGoogle Scholar
  31. 31.
    M. J. Berridge, “The endoplasmic reticulum: a multifunctional signal organelle,” Cell Calcium, 32, Nos. 5/6, 235-249 (2002).CrossRefPubMedGoogle Scholar
  32. 32.
    M. F. Leite, E. C. Thrower, W. Echivarria, et al., “Nuclear and cytosolic calcium are regulated independently,” Proc. Natl. Acad. Sci. USA, 100, No. 5, 2975-2980 (2003).CrossRefPubMedGoogle Scholar
  33. 33.
    P. Nicotera, S. Orrenius, T. Nilsson, et al., “An inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in liver nuclei,” Proc. Natl. Acad. Sci. USA, 87, No. 17, 6858-6862 (1990).CrossRefPubMedGoogle Scholar
  34. 34.
    L. Picard, K. Cote, J. Teijeira, et al., “Sarcoplasmic reticulum K+ channels from human and sheep atrial cells display a specific electro-pharmacological profile,” J. Mol. Cell Cardiol., 34, 1163-1172 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Bogomolets Institute of Physiology, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations