Skip to main content
Log in

Importance of Cationic Channels for Functioning of the Nuclear Envelope of Neurons as a Calcium Store

  • Published:
Neurophysiology Aims and scope

The membrane of the endoplasmic reticulum is, in fact, an extension of the nuclear envelope of eukaryotic cells; both these compartments can fulfill the function of intracellular calcium stores. Using a patch-clamp technique, we studied the biophysical properties of the channels expressed in the inner nuclear membrane of pyramidal neurons of the rat hippocampal CA1 area, in particular of large-conductance cationic channels and calcium channels of inositol trisphosphate receptors (the main channels in membranes of this type). As the results of the measurements showed, the activity of channels of both types demonstrates clearly pronounced voltage dependences. The probability of their open state (P o) depends on the voltage inside the nuclear envelope lumen. At positive potentials, the activity of these channels is significantly more intense than at negative potentials. Moreover, channels of both types are reversibly blocked at considerable negative potentials. We believe that this property of ion channels in the nuclear envelope is an important factor responsible for the control of calcium signals in the cell nucleus. We propose a hypothesis on the mechanism underlying termination of Ca2+ release from such intracellular stores, which is based on the specificity of the voltage dependence of ion channels of the above-mentioned types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Cutsuridis and T. Wennekers, “Hippocampus, microcircuits and associative memory,” Neural Netw., 22, No. 8, 1120-1128 (2009).

    Article  PubMed  Google Scholar 

  2. J. G. Howland and Y. T. Wang, “Synaptic plasticity in learning and memory: stress effects in the hippocampus,” Prog. Brain Res., 169, 145-158 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. A. M. Doherty, J. D. Jane, K. Cho, et al., “Neuronal calcium sensors and synaptic plasticity,” Biochem. Soc. Trans., 37, No. 6, 1359-1363 (2009).

    Article  PubMed  Google Scholar 

  4. W. A. Catterall and A. P. Few, “Calcium channel regulation and presynaptic plasticity,” Neuron, 59, No. 6, 882-901 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. M. Costa-Mattioli, D. Gobert, H. Harding, et al., “Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2,” Nature, 436 (7054), No. 25, 1166-1173 (2005).

    Article  Google Scholar 

  6. D. J. Linden, “A protein synthesis-dependent late phase of cerebellar long-term depression,” Neuron, 17, 483-490 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. S. Chawla, “Regulation of gene expression by Ca2+ signals in neuronal cells,” Eur. J. Pharmacol., 447, Nos. 2/3, 131-140 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. S. A. Josselyn and P. V. Nguyen, “CREB, synapses and memory disorders: past progress and future challenges,” Curr. Drug. Targets. CNS Neurol. Disord., 4, No. 5, 481-497 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. G. E. Hardingham, F. J. Arnold, and H. Bading, “Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity,” Nat. Neurosci., 4, No. 3, 261-267 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. H. Bading, “Transcription-dependent neuronal plasticity: the nuclear calcium hypothesis,” Eur. J. Biochem., 267, No. 17, 5280-5283 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. K. Limback-Stokin, E. Korzus, R. Nagaoka-Yasuda, et al., “Nuclear calcium/calmodulin regulates memory consolidation,” J. Neurosci., 24, No. 1, 10858-10867 (2004).

    Article  PubMed  Google Scholar 

  12. E. A. Fedorenko, D. E. Duzhii, and S. M. Marchenko, “Calcium channels in the nuclear envelope of pyramidal neurons of the rat hippocampus,” Neurophysiology, 40, No. 4, 238-242 (2008).

    Article  CAS  Google Scholar 

  13. G. Guihard, S. Proteau, M. D. Payet, et al., “Patch-clamp study of liver nuclear ionic channels reconstituted into giant proteoliposomes,” FEBS Lett., 476, 234-241 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. E. Rousseau, C. Michaud, D. Lefebvre, et al., “Reconstitution of ionic channels from inner and outer membranes of mammalian cardiac nuclei,” Biophys J., 70, No. 2, 703-714 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. S. M. Marchenko, “Spontaneously active ion channels of membranes of the nuclear envelope of hippocampal pyramidal neurons,” Neurophysiology, 39, No. 1, 1-6 (2007).

    Article  Google Scholar 

  16. M. Mazzanti, L. J. DeFelice, J. Cohn, and H. Malter, “Ion channels in the nuclear envelope,” Nature, 22, No. 343(6260), 764-767 (1990).

    Article  Google Scholar 

  17. E. Rousseau, C. Michaud, D. Lefebvre, et al., “Reconstitution of ionic channels from inner and outer membranes of mammalian cardiac nuclei,” Biophys. J., 70, No. 2, 703-714 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. A. Draguhn, G. Borner, R. Beckmann, et al., “Largeconductance cation channels in the envelope of nuclei from rat cerebral cortex,” J. Membr. Biol., 158, No. 2, 159-166 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. A. Franco-Obergon, H. Wang, and D. E. Clapham, “Distinct ion channel classes are expressed on the outer nuclear envelope of T- and B-lymphocyte cell lines,” Biophys. J., 79, 202-214 (2000).

    Article  Google Scholar 

  20. S. M. Marchenko, V. V. Yarotskyy, T. N. Kovalenko, et al., “Spontaneously active and InsP3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurons,” J. Physiol., 565, No. 15, 897-910 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. I. Bezprozvanny, “The inositol 1,4,5-trisphosphate receptors,” Cell Calcium, 38, 261-272 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. J. P. Humbert, N. Matter, J. C. Artault, et al., “Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate,” J. Biol. Chem., 271, No. 1, 478-485 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. E. A. Fedorenko, D. E. Duzhii, and S. M. Marchenko, “Voltage dependence of the activity of inositol trisphosphate receptors of the nuclear envelope of hippocampal pyramidal neurons,” Neurophysiology, 41, No. 5, 303-306 (2009).

    Article  CAS  Google Scholar 

  24. O. V. Gerasimenko, J. V. Gerasimenko, A. V. Tepikin, et al., “ATP dependent accumulation and inositol trisphosphateor cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope,” Cell, 80, No. 3, 439-444 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. M. Iino, “Molecular basis of spatio-temporal dynamics in inositol 1,4,5-trisphosphate-mediated Ca2+ signalling,” Jpn. J. Pharmacol., 82, No. 1, 15-20 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. M. D. Bootman, P. Lipp, and M. J. Berridge, “The organization and functions of local Ca2+ signals,” J. Cell Sci., 114, 2213-2222 (2001).

    CAS  PubMed  Google Scholar 

  27. M. J. Berridge, “Elementary and global aspects of calcium signaling,” J. Exp. Biol., 200, 315-319 (1997).

    CAS  PubMed  Google Scholar 

  28. M. Yamashita, M. Sugioka, and Y. Ogawa, “Voltage- and Ca2+-activated potassium channels in Ca2+ store control Ca2+ release,” FEBS J., 273, 3585-3597 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. M. Yamashita, “‘Quantal’ Ca2+ release reassessed – a clue to oscillation and synchronization,” FEBS Lett., 580, 4979-4983 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. O. Baumann and B. Walz, “Endoplasmic reticulum of animal cells and its organization into structural and functional domains,” Int. Rev. Cytol., 205, 149-214 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. M. J. Berridge, “The endoplasmic reticulum: a multifunctional signal organelle,” Cell Calcium, 32, Nos. 5/6, 235-249 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. M. F. Leite, E. C. Thrower, W. Echivarria, et al., “Nuclear and cytosolic calcium are regulated independently,” Proc. Natl. Acad. Sci. USA, 100, No. 5, 2975-2980 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. P. Nicotera, S. Orrenius, T. Nilsson, et al., “An inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in liver nuclei,” Proc. Natl. Acad. Sci. USA, 87, No. 17, 6858-6862 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. L. Picard, K. Cote, J. Teijeira, et al., “Sarcoplasmic reticulum K+ channels from human and sheep atrial cells display a specific electro-pharmacological profile,” J. Mol. Cell Cardiol., 34, 1163-1172 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Fedorenko.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 42, No. 4, pp. 281-286, July-August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorenko, E.A., Marchenko, S.M. Importance of Cationic Channels for Functioning of the Nuclear Envelope of Neurons as a Calcium Store. Neurophysiology 42, 233–238 (2011). https://doi.org/10.1007/s11062-011-9154-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-011-9154-z

Keywords

Navigation