, Volume 42, Issue 3, pp 175–184 | Cite as

Dynamic Spatial Organization of Receptive Fields of Neurons in the 21a Cortical Area

  • B. A. Harutiunian-Kozak
  • D. K. Khachvankyan
  • G. G. Grigoryan
  • J. A. Kozak
  • A. B. Sharanbekyan

We studied changes in the spatial parameters of receptive fields (RFs) of visually sensitive neurons in the associative area 21a of the cat cortex under conditions of presentation of moving visual stimuli. The results of experiments demonstrated that these parameters are dynamic and depend, from many aspects, on the pattern of the stimulus used for their estimation. Angular lengths of the horizontal and vertical axes of the RFs measured in the case of movement of the visual stimuli exceeded many times those determined by presentation of stationary blinking stimuli. As is supposed, a visual stimulus, when moving along the field of vision, activates a certain number of the neurons synaptically connected with the examined cell and possessing RFs localized along the movement trajectory. As a result, such integrated activity of the neuronal group can change the excitation threshold and discharge frequency of the studied neuron. It seems probable that correlated directed activation of the neuronal groups represents a significant neurophysiological mechanism providing dynamic modifications of the RF parameters of visually sensitive neurons in the course of processes of visual perception and identification of moving objects within the field of vision.


area 21a of the associative cortex visually sensitive neurons receptive fields moving stimuli dynamic modifications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. K. Hartline, “The response of single optic nerve fibers of the vertebrate eye to illumination of the retina,” Am. J. Physiol., 121, 400–415 (1938).Google Scholar
  2. 2.
    H. K. Hartline, “The receptive field of optic nerve fiber,” Am. J. Physiol., 130, 690–699 (1940).Google Scholar
  3. 3.
    D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol., 155, 385–398 (1961).PubMedGoogle Scholar
  4. 4.
    D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat visual cortex,” J. Physiol., 160, 106–154 (1962).PubMedGoogle Scholar
  5. 5.
    D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in two non-striate areas (18 and 19) of the cat,” J. Neurophysiol., 28, 229–289 (1965).PubMedGoogle Scholar
  6. 6.
    J. T. McIlwain, “Receptive fields of optic tract axons and lateral geniculate cells: periphery extent and barbiturate sensitivity,” J. Neurophysiol., 27, 1154–1173 (1964).PubMedGoogle Scholar
  7. 7.
    J. Xing and G. J. Gerstein, “Networks with lateral connectivity: II. Development of neural grouping and corresponding receptive field changes,” J. Neurophysiol., 75, 184–189 (1996).PubMedGoogle Scholar
  8. 8.
    J. Xing and G. J. Gerstein, “Networks with lateral connectivity: I. Dynamic properties mediated by the balance of intrinsic excitation and inhibition,” J. Neurophysiol., 75, 200–216 (1996).PubMedGoogle Scholar
  9. 9.
    H. Yao and C. Y. Li, “Clustered organization of neurons with similar extra receptive field properties in the primary visual cortex,” Neuron, 25, 547–553 (2002).CrossRefGoogle Scholar
  10. 10.
    B. A. Olhausen and D. T. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol., 14, 481–487 (2004).CrossRefGoogle Scholar
  11. 11.
    D. T. Field and E. T. Chichilinski, “Information processing in the primate retina: circuitry and coding,” Am. Rev. Neurosci., 30, 1–30 (2007).CrossRefGoogle Scholar
  12. 12.
    L. Galli, T. Chalupa, T. Mattei, and S. Bisti, “The organization of receptive fields in area 18 neurons of the cat varies with the spatiotemporal characteristics of the visual stimulus,” Exp. Brain Res., 71, 1–7 (1988).CrossRefPubMedGoogle Scholar
  13. 13.
    M. W. Pettet and C. D. Gilbert, “Dynamic changes in receptive fields size in cat primary visual cortex,” Proc. Natl. Acad. Sci. USA, 89, 8366–8370 (1992).CrossRefPubMedGoogle Scholar
  14. 14.
    C. D. Gilbert and T. N. Wiesel, “Receptive field dynamics in adult primary visual cortex,” Nature, 356, 150–152 (1992).CrossRefPubMedGoogle Scholar
  15. 15.
    B. T. Malone, V. R. Kumar, and D. L. Ringach, “Dynamics of receptive fields size in primary visual cortex,” J. Neurophysiol., 97, 407–414 (2007).CrossRefPubMedGoogle Scholar
  16. 16.
    B. Zernicki, “Pretrigeminal cat: a review,” Brain Res., 9, 1–14 (1986).CrossRefGoogle Scholar
  17. 17.
    P. O. Bishop, W. Kozak, and G. I. Vakkur, “Some quantitative aspects of the cat’s eye: axis and plain reference, visual field coordinates and optics,” J. Physiol., 163, 466–502 (1962).PubMedGoogle Scholar
  18. 18.
    R. Fernald and R. Chase, “An improved method for plotting retinal landmarks and focusing the eyes,” Vis. Res., 11, 95–96 (1971).CrossRefPubMedGoogle Scholar
  19. 19.
    P. O. Bishop, J. S. Coombs, and G. H. Henry, “Responses to visual contours: spatiotemporal aspects of excitation in the receptive fields of simple striate neurons,” J. Physiol., 219, 625–657 (1971).PubMedGoogle Scholar
  20. 20.
    H. B. Barlow, R. Fitzhugh, and S. Kuffler, “Change of organization in the receptive fields of the cat’s retina during adaptation,” J. Physiol., 137, 338–354 (1957).PubMedGoogle Scholar
  21. 21.
    D. Rose, “Responses of single units in cat visual cortex to moving bars of light as a function of bar length,” J. Physiol., 271, 1–23 (1977).PubMedGoogle Scholar
  22. 22.
    U. Polat and D. Sagi, “The architecture of perceptual interactions,” Vis. Res., 34, 73–78 (1994).CrossRefPubMedGoogle Scholar
  23. 23.
    B. A. Harutiunian-Kozak, A. B. Sharanbekian, A. L. Kazarian, et al., “Spatial summation processes in the receptive fields of visually driven neurons of the cat’s cortical area 21a,” Arch. Ital. Biol., 144, 127–144 (2006).PubMedGoogle Scholar
  24. 24.
    D. K. Khachvankyan, J. A. Kozak, G. G. Grigoryan, et al., “Spatial organization of receptive fields and dynamic peculiarities of neurons of the extrastriate area 21a of the cat cerebral cortex,” Neurophysiology, 40, No. 2, 105–114 (2008).CrossRefGoogle Scholar
  25. 25.
    K. Dec, W. T. Waleszcyk, A. Wrobel, and B. A. Harutiunian-Kozak, “The spatial infrastructure of visual receptive field in the cat’s superior colliculus,” Arch. Ital. Biol., 139, 337–356 (2001).PubMedGoogle Scholar
  26. 26.
    M. Steriade, “The flash-evoked afterdischarge,” Brain Res., 9, 169–212 (1968).CrossRefPubMedGoogle Scholar
  27. 27.
    M. Carandini and D. Ferster, “Membrane potential and firing rate in cat primary visual cortex,” J. Neurosci., 20, 470 (2000).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • B. A. Harutiunian-Kozak
    • 1
  • D. K. Khachvankyan
    • 1
  • G. G. Grigoryan
    • 1
  • J. A. Kozak
    • 2
  • A. B. Sharanbekyan
    • 3
  1. 1.Institute of Applied Problems of PhysicsAcademy of Sciences of ArmeniaYerevanRepublic of Armenia
  2. 2.Wright State UniversityDaytonUSA
  3. 3.National Institute of Public HealthYerevanRepublic of Armenia

Personalised recommendations