Skip to main content
Log in

Dynamic Spatial Organization of Receptive Fields of Neurons in the 21a Cortical Area

  • Published:
Neurophysiology Aims and scope

We studied changes in the spatial parameters of receptive fields (RFs) of visually sensitive neurons in the associative area 21a of the cat cortex under conditions of presentation of moving visual stimuli. The results of experiments demonstrated that these parameters are dynamic and depend, from many aspects, on the pattern of the stimulus used for their estimation. Angular lengths of the horizontal and vertical axes of the RFs measured in the case of movement of the visual stimuli exceeded many times those determined by presentation of stationary blinking stimuli. As is supposed, a visual stimulus, when moving along the field of vision, activates a certain number of the neurons synaptically connected with the examined cell and possessing RFs localized along the movement trajectory. As a result, such integrated activity of the neuronal group can change the excitation threshold and discharge frequency of the studied neuron. It seems probable that correlated directed activation of the neuronal groups represents a significant neurophysiological mechanism providing dynamic modifications of the RF parameters of visually sensitive neurons in the course of processes of visual perception and identification of moving objects within the field of vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. Hartline, “The response of single optic nerve fibers of the vertebrate eye to illumination of the retina,” Am. J. Physiol., 121, 400–415 (1938).

    Google Scholar 

  2. H. K. Hartline, “The receptive field of optic nerve fiber,” Am. J. Physiol., 130, 690–699 (1940).

    Google Scholar 

  3. D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol., 155, 385–398 (1961).

    PubMed  Google Scholar 

  4. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat visual cortex,” J. Physiol., 160, 106–154 (1962).

    PubMed  Google Scholar 

  5. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in two non-striate areas (18 and 19) of the cat,” J. Neurophysiol., 28, 229–289 (1965).

    CAS  PubMed  Google Scholar 

  6. J. T. McIlwain, “Receptive fields of optic tract axons and lateral geniculate cells: periphery extent and barbiturate sensitivity,” J. Neurophysiol., 27, 1154–1173 (1964).

    CAS  PubMed  Google Scholar 

  7. J. Xing and G. J. Gerstein, “Networks with lateral connectivity: II. Development of neural grouping and corresponding receptive field changes,” J. Neurophysiol., 75, 184–189 (1996).

    CAS  PubMed  Google Scholar 

  8. J. Xing and G. J. Gerstein, “Networks with lateral connectivity: I. Dynamic properties mediated by the balance of intrinsic excitation and inhibition,” J. Neurophysiol., 75, 200–216 (1996).

    CAS  PubMed  Google Scholar 

  9. H. Yao and C. Y. Li, “Clustered organization of neurons with similar extra receptive field properties in the primary visual cortex,” Neuron, 25, 547–553 (2002).

    Article  Google Scholar 

  10. B. A. Olhausen and D. T. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol., 14, 481–487 (2004).

    Article  Google Scholar 

  11. D. T. Field and E. T. Chichilinski, “Information processing in the primate retina: circuitry and coding,” Am. Rev. Neurosci., 30, 1–30 (2007).

    Article  CAS  Google Scholar 

  12. L. Galli, T. Chalupa, T. Mattei, and S. Bisti, “The organization of receptive fields in area 18 neurons of the cat varies with the spatiotemporal characteristics of the visual stimulus,” Exp. Brain Res., 71, 1–7 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. M. W. Pettet and C. D. Gilbert, “Dynamic changes in receptive fields size in cat primary visual cortex,” Proc. Natl. Acad. Sci. USA, 89, 8366–8370 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. C. D. Gilbert and T. N. Wiesel, “Receptive field dynamics in adult primary visual cortex,” Nature, 356, 150–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. B. T. Malone, V. R. Kumar, and D. L. Ringach, “Dynamics of receptive fields size in primary visual cortex,” J. Neurophysiol., 97, 407–414 (2007).

    Article  PubMed  Google Scholar 

  16. B. Zernicki, “Pretrigeminal cat: a review,” Brain Res., 9, 1–14 (1986).

    Article  Google Scholar 

  17. P. O. Bishop, W. Kozak, and G. I. Vakkur, “Some quantitative aspects of the cat’s eye: axis and plain reference, visual field coordinates and optics,” J. Physiol., 163, 466–502 (1962).

    CAS  PubMed  Google Scholar 

  18. R. Fernald and R. Chase, “An improved method for plotting retinal landmarks and focusing the eyes,” Vis. Res., 11, 95–96 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. P. O. Bishop, J. S. Coombs, and G. H. Henry, “Responses to visual contours: spatiotemporal aspects of excitation in the receptive fields of simple striate neurons,” J. Physiol., 219, 625–657 (1971).

    CAS  PubMed  Google Scholar 

  20. H. B. Barlow, R. Fitzhugh, and S. Kuffler, “Change of organization in the receptive fields of the cat’s retina during adaptation,” J. Physiol., 137, 338–354 (1957).

    CAS  PubMed  Google Scholar 

  21. D. Rose, “Responses of single units in cat visual cortex to moving bars of light as a function of bar length,” J. Physiol., 271, 1–23 (1977).

    CAS  PubMed  Google Scholar 

  22. U. Polat and D. Sagi, “The architecture of perceptual interactions,” Vis. Res., 34, 73–78 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. B. A. Harutiunian-Kozak, A. B. Sharanbekian, A. L. Kazarian, et al., “Spatial summation processes in the receptive fields of visually driven neurons of the cat’s cortical area 21a,” Arch. Ital. Biol., 144, 127–144 (2006).

    CAS  PubMed  Google Scholar 

  24. D. K. Khachvankyan, J. A. Kozak, G. G. Grigoryan, et al., “Spatial organization of receptive fields and dynamic peculiarities of neurons of the extrastriate area 21a of the cat cerebral cortex,” Neurophysiology, 40, No. 2, 105–114 (2008).

    Article  Google Scholar 

  25. K. Dec, W. T. Waleszcyk, A. Wrobel, and B. A. Harutiunian-Kozak, “The spatial infrastructure of visual receptive field in the cat’s superior colliculus,” Arch. Ital. Biol., 139, 337–356 (2001).

    CAS  PubMed  Google Scholar 

  26. M. Steriade, “The flash-evoked afterdischarge,” Brain Res., 9, 169–212 (1968).

    Article  CAS  PubMed  Google Scholar 

  27. M. Carandini and D. Ferster, “Membrane potential and firing rate in cat primary visual cortex,” J. Neurosci., 20, 470 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Khachvankyan.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 42, No. 3, pp. 213-224, May-June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harutiunian-Kozak, B.A., Khachvankyan, D.K., Grigoryan, G.G. et al. Dynamic Spatial Organization of Receptive Fields of Neurons in the 21a Cortical Area. Neurophysiology 42, 175–184 (2010). https://doi.org/10.1007/s11062-010-9148-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-010-9148-2

Keywords

Navigation