, Volume 41, Issue 4, pp 250–257 | Cite as

Modulation of Glycinergic Transmission in the Rat Spinal Dorsal Commissural Nucleus by Ginkgolide B

  • K. Nonaka
  • E. Kondratskaya
  • M. Maeda
  • T. Yamaga
  • N. Murayama
  • M. C. Shin
  • N. Akaike

The action of ginkgolide B (GB), a powerful compound of Ginkgo biloba extract, on glycine-mediated spontaneous currents in rat spinal sacral dorsal commissural nucleus (SDCN) neurons was examined. IPSCs evoked in spinal cord slices were inhibited in a dose-dependent manner by the addition of GB to the superfusion solution. The amplitude of eIPSCs was reduced to 61 ± 6.4% by 10 μM GB with acceleration of the kinetics of the currents, indicating the effect of GB on channel pores. Both the amplitude and success ratio (Rsuc) of eIPSC induced by electrical focal stimulation of single glycinergic nerve endings (boutons) also changed in the presence of 1 μM GB. These data suggest that GB modulates not only post-synaptic glycine receptors but also the pre-synaptic glycine release machinery.


spinal glycine receptor evoked inhibitory postsynaptic current (eIPSC) presynaptic bouton focal stimulation ginkgolide B 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Barnard, “Receptor classes and the transmitter-gated ion channels,” Trends Biochem. Sci., 17, 368-374 (1992)CrossRefPubMedGoogle Scholar
  2. 2.
    H. Betz, J. Kuhse, V. Schmieden, et al., “Structure and functions of inhibitory and excitatory glycine receptors,” Ann. N.Y. Acad. Sci., 868, 667-676 (1999).CrossRefPubMedGoogle Scholar
  3. 3.
    K. Morita, N. Motoyama, T. Kitayama, et al., “Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice,” J. Pharmacol. Exp. Ther., 326, 633-645 (2008).CrossRefPubMedGoogle Scholar
  4. 4.
    H. U. Zeilhofer, “The glycinergic control of spinal pain processing,” Cell Mol. Life Sci., 62, 2027-2035 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    K. Hosl, H. Reinold, R. J. Harvey, et al., “Spinal prostaglandin E receptors of the Ep2 subtype and the glycine receptor alpha3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection,” Pain, 126, 46-53 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    J. W. Lynch and R. J. Callister, “Glycine receptors: a new therapeutic target in pain pathways,” Curr. Opin. Invest. Drugs, 7, 48-53 (2006).Google Scholar
  7. 7.
    S. M. Wojcik, S. Katsurabayashi, I. Guillemin, et al., “A shared vesicular carrier allows synaptic corelease of GABA and glycine,” Neuron, 50, 575-587 (2006).CrossRefPubMedGoogle Scholar
  8. 8.
    P. Legendre, “The glycinergic inhibitory synapse,” Cell Mol. Life Sci., 58, 760-793 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    H. Betz, B. Schmitt, C. M. Becker, et al., “Structure and biology of central nervous system neurotransmitter receptors,” Biochem. Soc. Trans., 15, 107-108 (1987).PubMedGoogle Scholar
  10. 10.
    P. Braquet, “Proofs of involvement of PAF-acether in various immune disorders using BN 52021 (ginkgolide B): A powerful PAF-acether antagonist isolated from Ginkgo biloba L,” Adv. Prostaglandin Thromboxane Leukot. Res., 16, 179-198 (1986).PubMedGoogle Scholar
  11. 11.
    E. L. Kondratskaya, H. Betz, O. A. Krishtal, and B. Laube, “The beta subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors,” Neuropharmacology, 49, 945-951 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    L. Ivic, T. T. Sands, N. Fishkin, K. Nakanishi, et al., “Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABA(A) receptors,” J. Biol. Chem., 278, 49279-49285 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    S. Katsurabayashi, H. Kubota, H. Higashi, et al., “Distinct profiles of refilling of inhibitory neurotransmitters into presynaptic terminals projecting to spinal neurones in immature rats,” J. Physiol., 560, 469-478 (2004).CrossRefPubMedGoogle Scholar
  14. 14.
    L. J. Wu, Y. Li, and T. L. Xu, “ Co-release and interaction of two inhibitory co-transmitters in rat sacral dorsal commissural neurons,” NeuroReport, 13, 977-981 (2002).CrossRefPubMedGoogle Scholar
  15. 15.
    J. Nabekura, T. L. Xu, J. S. Rhee, et al., “Alpha2-adrenoceptor-mediated enhancement of glycine response in rat sacral dorsal commissural neurons,” Neuroscience, 89, 29-41 (1999).CrossRefPubMedGoogle Scholar
  16. 16.
    E. D. Schomburg, E. Jankowska, and F. K. Wiklund, “Nociceptive input to spinal interneurones in reflex pathways from group I muscle afferents in cats,” Neurosci. Res., 38, 447-450 (2000).CrossRefPubMedGoogle Scholar
  17. 17.
    N. Akaike A. J. Moorhouse, “Techniques: Applications of the nerve-bouton preparation in neuropharmacology,” Trends Pharmacol. Sci., 24, 44-47 (2003).CrossRefGoogle Scholar
  18. 18.
    N. Harata, J. Wu, H. Ishibashi, et al., “Run-down of the GABAA Response under experimental ischemia in acutely dissociated CA1 pyramidal neurons of the rat,” J. Physiol., 500, Part 3, 673-688 (1997).PubMedGoogle Scholar
  19. 19.
    T. Shirasaki, K. Aibara, and N. Akaike, “Direct modulation of GABAA receptor by intracellular ATP in dissociated nucleus tractus solitarii neurons of rat,” J. Physiol., 449, 551-572 (1992).PubMedGoogle Scholar
  20. 20.
    N. Akaike, N. Murakami, S. Katsurabayashi, et al., “Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampal neuron,” Neurosci. Res., 42, 187-195 (2002).CrossRefPubMedGoogle Scholar
  21. 21.
    J. S. Rhee, Z. M. Wang, J. Nabekura, et al., “ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses,” J. Physiol., 524, Part 2, 471-483 (2000).CrossRefPubMedGoogle Scholar
  22. 22.
    R. Hawthorne, B. A. Cromer, M. W. Parker, and J. W. Lynch, “Molecular determinants of ginkgolide binding in the glycine receptor pore,” J. Neurochem., July, 98, 395-407 (2006).CrossRefPubMedGoogle Scholar
  23. 23.
    I. S. Jang, H. J. Jeong, S. Katsurabayashi, and N. Akaike, “Functional roles of presynaptic GABA(A) receptors on glycinergic nerve terminals in the rat spinal cord,” J. Physiol., 541, 423-434 (2002).CrossRefPubMedGoogle Scholar
  24. 24.
    E. L. Kondratskaya, P. V. Lishko, S. S. Chatterjee, and O. A. Krishtal, “BN52021, a platelet activating factor antagonist, is a selective blocker of glycine-gated chloride channel,” Neurochem. Int., 40, 647-653 (2002)CrossRefPubMedGoogle Scholar
  25. 25.
    K. Murase, M. Randic, T. Shirasaki, et al., “Serotonin suppresses N-methyl-D-aspartate responses in acutely isolated spinal dorsal horn neurons of the rat,” Brain Res., 525, 84-91 (1990).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • K. Nonaka
    • 1
    • 2
  • E. Kondratskaya
    • 1
    • 4
  • M. Maeda
    • 1
    • 3
  • T. Yamaga
    • 1
  • N. Murayama
    • 2
  • M. C. Shin
    • 1
  • N. Akaike
    • 1
  1. 1.Kumamoto Health Science UniversityKumamotoJapan
  2. 2.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
  3. 3.Kurume UniversityKurumeJapan
  4. 4.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKyivUkriane

Personalised recommendations