, Volume 41, Issue 3, pp 211–229 | Cite as

Electroneuromyographic studies of pain sensitivity

  • É. R. Dzheldubayeva
  • E. N. Chuyan
  • O. V. Bogdanova
  • L. A. Strizhak

We analyze the published information on the techniques of studies of pain sensitivity using objective electroneuromyographic approaches and the results of these studies. In particular, we describe works where the H reflex, nociceptive flexor and blinking reflexes, and exteroceptive suppression of voluntary muscle activity were examined. Some aspects of using somatosensory evoked potentials in the studies of pain phenomena are also discussed.


electroneuromyography pain sensitivity H reflex nociceptive flexor reflex exteroceptive suppression blinking reflex somatosensory evoked potentials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. N. Kassil’, The Science of Pain [in Russian], Nauka, Moscow (1975).Google Scholar
  2. 2.
    L. V. Kalyuzhyi, Physiological Mechanisms of Regulation of Pain Sensitivity [in Russian], Meditsina, Moscow (1984).Google Scholar
  3. 3.
    E. O. Bragin, Neurochemical Mechanisms of Regulation of Pain Sensitivity [in Russian], Publ. House of the Friendship University, Moscow (1991).Google Scholar
  4. 4.
    V. A. Michailovich and Yu. D. Ignatov, The Pain Syndrome [in Russian], Meditsina, Leningrad (1990).Google Scholar
  5. 5.
    A. M. Vein and M. Ya. Avroutskii, Pain and Anesthesia [in Russian], Meditsina, Moscow (1997).Google Scholar
  6. 6.
    V. M. Ol’khov, S. Ya. Voloshchouk, A. G. Korchinskii, and V. Ya. Voloshchouk, “Combined neurosurgical treatment of patients with tumor of the posterior skull dimple,” Ukr. Neirokhir. Zh., 162–163 (2001).Google Scholar
  7. 7.
    A. M. Vein, Pain Syndromes in Neurological Practice [in Russian], MEDpress, Moscow (2001).Google Scholar
  8. 8.
    A. Yu. Kataev and A. V. Babayants, “Principles of anesthesia within the postsurgery period,” Russ. Med. Zh., 12, No. 7, 479–483 (2004).Google Scholar
  9. 9.
    J. Olesen and J. Schoenen, “Tension-type headache, pathophysiology: synthesis,” in: The Headaches, J. Olesen, P. Tfelt-Hansen, and K. M. A. Welch (eds.), Raven Press, New York (1993), pp. 493–496.Google Scholar
  10. 10.
    R. Jensen and J. Olesen, Initiating mechanisms of experimentally induced tension-type headache,” Cephalalgia, 16, No. 3, 175–182 (1996).PubMedGoogle Scholar
  11. 11.
    A. B. Danilov, Al. B. Danilov, and A.M. Vein,“Exteroceptive suppression of voluntary muscle activity: A novel approach in studies of the central nociceptive mechanisms,” Zh. Nevrol. Psikhiat., 3, 90–94 (1995).Google Scholar
  12. 12.
    A. B. Danilov, Al. B. Danilov, and A. M. Vein, “Nociceptive flexor reflex: A technique for the studies of the cerebral mechanisms of pain (a review),” Korsakov Zh. Nevrol. Psikhiat., 1, 107–112 (1996).Google Scholar
  13. 13.
    J. C. Willer, “Nociceptive flexion reflexes as a tool for pain research in man,” Adv. Neurol., 39, 809–827 (1983).PubMedGoogle Scholar
  14. 14.
    A. A. Yakupova, M. F. Ismagilov, and R. A. Yakupov, “Investigation of the blink reflex in tension type headache,” in: The 3rd European Headache Conference: Abstracts, Sardinia (1996), p. 56.Google Scholar
  15. 15.
    A. A. Yakupova, M. F. Ismagilov, and R. A. Yakupov, “Somatosensory evoked potentials of the brain in episodic tension-type headache,” in: Cephalalgia. The 8th Congress of the International Headache Society: Abstracts, Amsterdam (1997), p. 276.Google Scholar
  16. 16.
    S. G. Nikolayev, Practical Manual for Clinical Electromyography [in Russian], Ivanovo State Med. Acad., Ivanovo (2003).Google Scholar
  17. 17.
    A. I. Kostuykov, Dynamic Properties of the Motor System in Mammals [in Russian], Tov. FADA Ltd., Kyiv (2007).Google Scholar
  18. 18.
    V. P. Novikova, “Possibilities and limits of the technique of studying the H reflex in the diagnostics of diseases of the nervous system,” Korsakov Zh. Nevrol. Psikhiat., 12, 1804–1810 (1981).Google Scholar
  19. 19.
    L. O. Badalyan and I. A. Skvortsov, Clinical Electromyography: A Manual for Physicians [in Russian], Meditsina, Moscow (1986).Google Scholar
  20. 20.
    L. R. Zenkov and M. A. Ronkin, Functional Diagnostics of Neurological Diseases [in Russian], Meditsina, Moscow (1991).Google Scholar
  21. 21.
    P. J. Delwaide, J. L. Pepin, and G. Rapisarda, “Spinal reflex studies enable one to analyze supraspinal dysfunctions,” Electroencephalogr. Clin. Neurophysiol., 50, 373–376 (1999).Google Scholar
  22. 22.
    P. Hoffmann, “Uber die beziehungen der sehnenreflex zur willktirlichen bewcgung und zum tonus,” Z. Biol., 68, 35l (1918).Google Scholar
  23. 23.
    J. W. Magladery, W. E. Porter, A. M. Park, and R. D. Teasdall, “The two neurons reflex and identification of certain action potentials from spinal roots and cord,” Johns Hopk. Hosp. Bull., 88, No. 3, 499–519 (1951).Google Scholar
  24. 24.
    J. W. Magladery and D. B. McDougal, “Electrophysiological studies of nerve and reflex activity in normal man. I. Identification of certain reflexes in the electromyogram and the conduction velocity of peripheral nerve fibers,” Johns Hopk. Hosp. Bull., 86, No. 5, 265–290 (1950).Google Scholar
  25. 25.
    J. W. Magladery, R. D. Teasdall, A. M. Park, and H. W. Languth, “Electrophysiological studies of reflex activity in patients with lesions of the nervous system. I. A comparison of spinal motoneuron excitability following afferent nerve volleys in normal persons and patients with upper motor neuron lesions,” Johns Hopk. Hosp. Bull., 91, No. 4, 217–219 (1952).Google Scholar
  26. 26.
    Î. Z. Mel’nikova, “Effects of cooling and heating of the hand on reciprocal Ia inhibition of the forearm flexor muscles in humans,” Fiziol. Zh., 46, No. 5, 19–23 (2000).PubMedGoogle Scholar
  27. 27.
    P. J. Delwaide and P. Crenna, “Cutaneous nerve stimulation and motoneuronal excitability: II. Evidence for nonsegmental influences,” J. Neurol. Neurosurg., Psychiat., 47, No. 2, 190–196 (1984).Google Scholar
  28. 28.
    V. N. Komantsev and V. A. Zabolotnykh, Methodical Basis of Clinical Electromyography [in Russian], Lan’, Saint Petersburg (2001).Google Scholar
  29. 29.
    H. Taborikowa and D. S. Sax, “Motoneuron pool and the H-reflex,” J. Neurol., Neurosurg., Psychiat., 31, No. 4, 354–361 (1968).Google Scholar
  30. 30.
    A. Eisen, M. Hoirch, and A. Moll, “Evaluation of radiculopathies by segmental stimulation and somatosensory evoked potentials,” Can. J. Neurol. Sci., 10, No. 3, 178–182 (1983).PubMedGoogle Scholar
  31. 31.
    S. T. Baikushev, Z. Kh. Manovich, and V. P. Novikova, Stimulation Electromyography and Electroneurography in Clinics of Neurological Diseases [in Russian], Meditsina, Moscow (1974)Google Scholar
  32. 32.
    A. Van Boxtel, “Differential effects of low-frequency depression, vibration-inhibition and post-tetanic potentiating on H-reflex and tendon jerks in the human soleus muscle,” J. Neurophysiol., 55, No. 3, 551–568 (1986).PubMedGoogle Scholar
  33. 33.
    A. N. Brazhnikov, P. G. Gaft, V. P. Kaperko, et al., “Homosynaptic depression of the monosynaptic spinal reflex in healthy people and patients, suffering from a cerebral stroke,” Neirofiziologiya, 21, No. 4, 555–558 (1989).Google Scholar
  34. 34.
    M. K. Floeter and A. F. Kohn, “H-reflexes of different sizes exhibit differential sensitivity to low frequency depression,” Electroencephalogr. Clin. Neurophysiol., 105, No. 6, 470–475 (1997).PubMedGoogle Scholar
  35. 35.
    Y. Kagamihara, A. Hayaslii, Y. Okuma, et al., “Reassessment of H-reflex recovery curve using the double stimulation procedure,” Muscle Nerve, 21, No. 3, 352–360 (1998).PubMedGoogle Scholar
  36. 36.
    M. Kh. Starobinets and L. D. Volkova, “Diagnostics of syndromes related to injuries of the nervous system according to the tension/time ratio on the central and motor responses of the shin and foot muscles,” Korsakov Zh. Nevrol. Psikhiat., 11, 1642–1648 (1984).Google Scholar
  37. 37.
    V. Ya. Neretin, S. V. Kotov, L. V. Pepina, and T. S. Kamynina, “Clinical/electrophysiological study of the state of the neuromuscular system in patients with diabetes insipidus of types I and II,” Korsakov Zh. Nevrol. Psikhiat., No. 34–38 (1997).Google Scholar
  38. 38.
    A. Ozge, M. Saracoglu, Y. Gurtekin, et al., “The sensitivity of sympathetic skin responses and standard electrophysiological methods in diagnosis of diabetic neuropathy,” Electromyogr. Clin. Neurophysiol., 40, No. 1, 37–43 (2000).PubMedGoogle Scholar
  39. 39.
    S. S. Abdulwahab, “Treatment based on H–reflexes testing improves disability status in patients with cervical radiculopathy,” Int. J. Rehab. Res., 22, No. 3, 207–214 (1999).CrossRefGoogle Scholar
  40. 40.
    S. S. Abdulwahab and M. Sabbahi, “Neck retractions, cervical root decompression, and radicular pain,” J. Orthop. Sports Phys. Then., 30, No. 1, 4–9 (2000).Google Scholar
  41. 41.
    F. F. Beloyartsev, Electromyography in Anesthesiology [in Russian], Meditsina, Moscow (1980).Google Scholar
  42. 42.
    R. S. Person, Electromyography in Studies on Humans [in Russian], Nauka, Moscow (1983).Google Scholar
  43. 43.
    M. L. Kukoushkin, A. V. Syrovegin, and A. V. Gnezdilov, “Nociceptive reflex reactions of the muscles of the upper limb in humans,” Byul. Éksp. Biol. Med., 126, No. 9, 278–282 (1998).Google Scholar
  44. 44.
    J. B. Dahl, C. Erichsen, A. Fuglsang-Frederiksen, and H. Kehlet, “Pain sensation and nociceptive reflex excitability in surgical patients and human volunteers,” Br. J. Anaesthesia, 69, No. 2, 117–121 (1992).Google Scholar
  45. 45.
    M. F. Ismagilov and A. A. Yakupova, “Clinical/ electromyographic characteristics of the tension headache,” Kazan’ Med. Zh., 92, No. 1, 44–46 (1992).Google Scholar
  46. 46.
    D. F. Klushina, “H reflex as an index of pathophysiological reactions to pain,” in: Organization of Medical Assistance for Patients with Pain Syndrome. Proc. of Russ. Sci./Pract. Conference [in Russian],Novosibirsk (1997), pp. 33–50.Google Scholar
  47. 47.
    P. Ashby and M. Verrier, “Human motoneuron responses to group I volleys blocked presynaptically by vibration,” Brain Res., 184, No. 2, 511–516 (1980).PubMedGoogle Scholar
  48. 48.
    J. E. Desmedt and E. Godaux, “The tonic vibration reflex and the vibration paradox in limb and jaw muscles in man,” in: Spinal and Supraspinal Mechanisms of Voluntary Motor Control and Locomotion, Karger, Basel (1980), pp. 215–247.Google Scholar
  49. 49.
    M. Barrella, R. Toscano, M. Goldoni, and M. Bevilacqua, “Frequency rhythmic electrical modulation system (FREMS) on H-reflex amplitudes in healthy subjects,” Eur. J. Medicophysiol., 43, No. 3, 37–47 (2007).Google Scholar
  50. 50.
    C. M. Price and A. D. Pandyan, “Electrical stimulation for preventing and treating post-stroke shoulder pain,” Cochrane Database Syst. Rev., 14, No. 4, 1–30 (2008).Google Scholar
  51. 51.
    V. G. Ninel’, L. V. Suvorov, G. L. Korshunova, and L. P. Sedova, “Estimation of the efficacy of curative electrostimulation of the spinal cord for patients with chronic pain and spastic/pain syndromes in the trunk and extremities according to the dynamics of electroneurographic indices,” in: Organization of Medical Assistance for Patients with Pain Syndromes. Proc. of Russ. Sci./Pract. Conference [in Russian], Novosibirsk (1997), p. 36.Google Scholar
  52. 52.
    S. Kimura, M. Tanabe, M. Honda, and H. Ono, “Enhanced wind-up of the C-fiber-mediated nociceptive flexor reflex movement following painful diabetic neuropathy in mice,” J. Pharmacol. Sci., 97, No. 2, 195–202 (2005).PubMedGoogle Scholar
  53. 53.
    C. D. Mørch, O. K. Andersen, T. Graven-Nielsen, and L. Arendt-Nielsen, “Nociceptive withdrawal reflexes evoked by uniform-temperature laser heat stimulation of large skin areas in humans,” J. Neurosci. Methods, 160, No. 1, 85–92 (2007).PubMedGoogle Scholar
  54. 54.
    G. Sandrini, L. Ruiz, M. Capararo, et al., “Effects of dothiepin on nociceptive flexion reflex and diffuse noxious inhibitory controls in humans,” Eur. J. Pharmacol., 243, No. 1, 99–102 (1993).PubMedGoogle Scholar
  55. 55.
    J. C. Willer and D. Albe-Fessard, “Further studies on the role of afferent input from relatively large diameter fibers in transmission of nociceptive messages in humans,” Brain Res., 278, Nos. 1/2, 318–321 (1983).PubMedGoogle Scholar
  56. 56.
    J. C. Wilier and N. Bathien, “Pharmacological modulations on the nociceptive flexion reflex in man,” Pain, 3, No. 2, 111–119 (1977).Google Scholar
  57. 57.
    E. Kugelberg, K. Eklund, and L. Grimby, “An electromyographic study of the nociceptive reflexes of the lower limb mechanism of the plantar responses,” Brain, 83, No. 2, 394–410 (1960).PubMedGoogle Scholar
  58. 58.
    R. Dowman, “Spinal and supraspinal correlates of nociception in man,” Pain, 45, No. 2, 269–281 (1991).PubMedGoogle Scholar
  59. 59.
    À. P. Gokin, Ì. V. Karpukhina, and Yu. P. Limanskii, “Influence of stimulation of the central gray matter on low- and high-threshold startle reflexes,” Neirofiziologiya, 21, No. 1, 71–78 (1989).Google Scholar
  60. 60.
    C. R. France and S. Suchowiecki, “A comparison of diffuse noxious inhibitory controls in men and women,” Pain, 81, No. 2, 77–84 (1999).PubMedGoogle Scholar
  61. 61.
    C. Tassorelli, G. Sandrini, A. P. Cecchini, et al., “Changes in nociceptive flexion reflex threshold across the menstrual cycle in healthy women,” Psychosom. Med., 64, No. 4, 621–626 (2002). PubMedGoogle Scholar
  62. 62.
    L. Arendt-Nielsen, J. Brennum, S. Sindrup, and P. Bak, “Electrophysiological and psychophysical quantification of temporal summation in the human nociceptive system,”Eur. J. Appl. Physiol., 68, No. 3, 266–273 (1994).Google Scholar
  63. 63.
    G. Sandrini, F. Antonaci, S. Lanfranchi, et al., “Asymmetrical reduction of the nociceptive flexion reflex threshold in cluster headache,” Cephalalgia, 20, No. 7, 647–652 (2000).PubMedGoogle Scholar
  64. 64.
    N. Danziger, E. Fourmer, D. Bouhassira, et al., “Different strategies of modulation can be operative during hypnotic analgesia: a neurophysiological study,” Pain, 75, No. l, 85–92 (1998).PubMedGoogle Scholar
  65. 65.
    M. Langemark, F. W. Bach, T. S. Jensen, and J. Olesen, “Decreased nociceptive flexion reflex threshold in chronic tension-type headache,” Arch. Neurol., 50, No. 10, 1061–1423 (1993).PubMedGoogle Scholar
  66. 66.
    J. A. Desmeules, C. Cedraschi, E. Rapiti, et al., “Neurophysiologic evidence for a central sensitization in patients with fibromyalgia,” Arthritis Rheum., 48, No. 5, 1420–1429 (2003).PubMedGoogle Scholar
  67. 67.
    F. Antonaci, G. Sandrini, A. Danilov, and T. Sand, “Neurophysiological studies in chronic paroxysmal hemicrania and hemicrania continua,” Headache, 34, No. 8, 479–483 (1994).PubMedGoogle Scholar
  68. 68.
    N. V. Latysheva and E. G. Filatova, “Efficiency of venlafaxine with respect to chronic everyday headache,” Lechenie Nerv. Boleznei, 9, No. 1 (23), 26–32 (2008).Google Scholar
  69. 69.
    M. Inoue, T. Kawashima, H. Takeshima, et al., “In vivo pain-inhibitory role of nociceptin/orphanin FQ in spinal cord,” J. Pharmacol. Exp. Ther., 305, No. 2, 495–501 (2003).PubMedGoogle Scholar
  70. 70.
    J. C. Willer, F. Boureau, and D. Albe-Fessard, “Supraspinal influences on nociceptive flexion reflex and pain sensation in man,” Brain Res., 179, 61–68 (1979).PubMedGoogle Scholar
  71. 71.
    J. C. Willer, H. Dehen, and J. Cambier, “Study of pain thresholds by recording flexor reflexes in thalamic syndromes,” Rev. Neurol., 142, No. 4, 303–337 (1986).PubMedGoogle Scholar
  72. 72.
    Z. Wiesenfeld-Hallin, X. J. Xu, J. Hughes, et al., “Studies on the effect of systemic PD134308 (CAM 958) in spinal reflex and pain models with special reference to interaction with morphine and intrathecal galanin,” Neuropeptides, 19, Suppl. l, 79–84 (1991).PubMedGoogle Scholar
  73. 73.
    Z. H. Zhang, S. W. Yang, J. Y. Chen, et al., “Interaction of serotonin and norepinephrine in spinal antinociception,” Brain Res. Bull., 38, No. 2, 167–171 (1995).PubMedGoogle Scholar
  74. 74.
    F. Guinmand, X. Dupont, L. Brasseur, et al., “The effects of ketamine on the temporal summation (wind-up) of the RIII nociceptive reflex and pain in humans,” Anesth. Analg., 90, 408–414 (2000).Google Scholar
  75. 75.
    R. Guieu, O. Bun, J. Pouget, and G. Serratnce, “Analgesic effect of indomethacin shown using the nociceptive flexion reflex in humans,” Ann. Rheum. Dis., 51, 391–393 (1992).PubMedGoogle Scholar
  76. 76.
    L. Garcia-Larrea, M. Sindou, and F. Mauguire, “Clinical use of nociceptive flexion reflex recording in the evaluation of functional neurosurgical procedures,” Acta Neurochir., 46, Suppl. 1, 53–57 (1989).Google Scholar
  77. 77.
    L. Plaghki, D. Bragard, D. Le Bars, et al., “Facilitation of a nociceptive flexion reflex in man by non-noxious laser radiant heat produced by a laser,” J. Neurophysiol., 79, No. 5, 2557–2567 (1998).PubMedGoogle Scholar
  78. 78.
    C. Ertekin and D. Akçali, “Effect of continuous vibration on nociceptive flexor reflexes,” J. Neurol., Neurosurg., Psychiat., 41, No. 6, 532–537 (1978).Google Scholar
  79. 79.
    H. Cowan and J. Broumlik, Manual for Electromyography and Electrodiagnostics [in Russian], Meditsina, Moscow (1975).Google Scholar
  80. 80.
    C. S. Sherrington, “Reflexes elicitable in the cat from pinna vibrissae and jaws,” J. Physiol., 51, No. 6, 404–431 (1917).PubMedGoogle Scholar
  81. 81.
    H. Laugier and H. Cardot, “La reflexe linguo-maxillaire,” Comp. Rend. Soc. Biol., 86, 529 (1922).Google Scholar
  82. 82.
    J. Schoenen, “Exteroceptive suppression of temporalis muscle activity: methodological and physiological aspects,” Cephalalgia, 13, Issue 1, 3–10 (2002).Google Scholar
  83. 83.
    O. Komiyama, K. Wang, P. Svensson, et al., “Gender difference in masseteric exteroceptive suppression period and pain perception,” Clin. Neurophysiol., 116, No. 11, 2599–2605 (2005).PubMedGoogle Scholar
  84. 84.
    E. Godaux and J. E. Desmedt, “Exteroceptive suppression and motor control of the masseter and temporalis muscles in normal man,” Brain Res., 85, No. 3, 447–458 (1975).PubMedGoogle Scholar
  85. 85.
    B. W. Ongerboer de Visser, “Anatomical and functional organization of reflexes involving the trigeminal system in man: jaw reflex, blink reflex, corneal reflex, and exteroceptive suppression,” Adv. Neurol., 39, 727–738 (1983).PubMedGoogle Scholar
  86. 86.
    H. C. Karkazis and A. E. Kossioni, “Normal side-to-side variation of the exteroceptive suppression of masseter muscle in young dentate adults,” J. Oral. Rehabil., 26, No. 12, 944–951 (1999).PubMedGoogle Scholar
  87. 87.
    M. L. Kukushkin, A. V. Syrovegin, A. V. Gnezdilov, et al., “Heterotopic nociceptive EMG-reactions in m. masseter,” Bull. Exp. Biol. Med., 135, No. 1, 19–22 (2003).PubMedGoogle Scholar
  88. 88.
    A. Biasiotta, A. Peddireddy, K. Wang, et al., “Effect of pinching-evoked pain on jaw-stretch reflexes and exteroceptive suppression periods in healthy subjects,” Clin. Neurophysiol., 118, No. 10, 2180–2188 (2007).PubMedGoogle Scholar
  89. 89.
    C. Tataroglu, A. Kanik, G. Sahin, et al., “Exteroceptive suppression patterns of masseter and temporalis muscles in central and peripheral headache disorders,” Cephalalgia, 22, No. 6, 444–452 (2002).PubMedGoogle Scholar
  90. 90.
    O. Hansen, P. Svensson, L. Arendt-Nielsen, and T. S. Jensen, “Relation between perceived stimulus intensity and exteroceptive reflex responses in the human masseter muscles,” Clin. Neurophysiol., 110, 1290–1296 (1999).PubMedGoogle Scholar
  91. 91.
    K. S. Turker, “Exteroceptive suppression of the jaw closing muscle electromyogram: Methodological issues applicable to all human reflex studies,” Clin. Neurophysiol., 118, No. 5, 951–953 (2007).PubMedGoogle Scholar
  92. 92.
    W. Paulus, O. Raubüchl, A. Straube, and J. Schoenen, “Exteroceptive suppression of temporalis muscle activity in various types of headache,” Headache, 32, No. 1, 41–44 (1992).PubMedGoogle Scholar
  93. 93.
    J. Schoenen, B. Agr, B. A. Jamart, et al., “Exteroceptive suppression of temporalis muscle activity in chronic headache,” Neurology, 37, 18–34 (1987).Google Scholar
  94. 94.
    T. M. Wallasch, “Drug-induced headache,” Fortschr. Neurol. Psychiat., 60, No. 3, 114–118 (1992).PubMedGoogle Scholar
  95. 95.
    H. Göbel and M. Dworschak, “Exteroceptive suppression of activity of the temporal muscle. Principles and applications,” Der. Nervenarzt., 67, No. 10, 846–859 (1996).PubMedGoogle Scholar
  96. 96.
    F. Ebinger, “Exteroceptive suppression of masseter muscle activity in juvenile migraineurs,” Cephalalgia, 26, No. 6, 722–730 (2006).PubMedGoogle Scholar
  97. 97.
    K. Nakashima and K. Takahashi, “Exteroceptive suppression of the masseter and temporalis muscles and parkinsonian rigidity,” J. Psychiat.. Neurol., 45, No. 4, 865–871 (1991).Google Scholar
  98. 98.
    J. Schoenen, “Exteroceptive suppression of temporalis muscle activity in patients with chronic headache and in normal volunteers: methodology, clinical and pathophysiological relevance,” Headache, 33, No. 1, 3–17 (1993).PubMedGoogle Scholar
  99. 99.
    T. M. Wallasch, “A study on the exteroceptive suppression of the masseter, temporalis and trapezius muscles produced by mental nerve stimulation in patients with chronic headaches,” Cephalalgia, 11, No. 3, 162–163 (1991).PubMedGoogle Scholar
  100. 100.
    L. Bendtsen, R. Jensen, and J. Olesen, “Qualitatively altered nociception in chronic myofascial pain,” Pain, 65, Nos. 2/3, 259–264 (1996).PubMedGoogle Scholar
  101. 101.
    O. Komiyama, K. Wang, P. Svensson, et al., “Ethnic differences regarding sensory, pain, and reflex responses in the trigeminal region,” Clin. Neurophysiol., 120, No. 2, 384–349 (2009).PubMedGoogle Scholar
  102. 102.
    A. Nakashima, T. Katagiri, and M. Tamura, “Crosstalk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts,” J. Biol. Chem., 280, No. 45, 37660–37668 (2005).PubMedGoogle Scholar
  103. 103.
    H. Göbel and A. Heinze, “Headache and facial pain in the elderly,” Schmerz, 21, No. 6, 561–569 (2007).PubMedGoogle Scholar
  104. 104.
    H. Tokimura, V. Di Lazzaro, Y. Tokimura, et al., “Short latency inhibition of human hand motor cortex by somatosensory input from the hand,” J. Physiol., 523, Part 2, 503–513 (2004).Google Scholar
  105. 105.
    A. Esteban, “A neurophysiological approach to brainstem reflexes. Blink reflex,” Neurophysiol. Clin., 29, No. 1, 7–38 (1999).PubMedGoogle Scholar
  106. 106.
    G. B. Grouzman, “Electromyographic study of the blinking reflex upon the impairment of the peripheral nervous system,” Korsakov Zh. Nevrol. Psikhiat., 74, No. 11, 1649–1653 (1974).Google Scholar
  107. 107.
    E. Kugelberg, “Facial reflexes,” Brain, 75, No. 3, 385–396 (1952).PubMedGoogle Scholar
  108. 108.
    A. G. Remnyov, Application of Magnetic Stimulation for Estimation of the Functional State of the Arc of the Blinking Reflex [in Russian], Abstr. of Cand. Thesis, Biol. Sci., Barnaul (1997)Google Scholar
  109. 109.
    G. Csecsei, “Facial afferent fibers in the Blink reflex of man,” Brain Res., 161, No. 2, 347–354 (1979).PubMedGoogle Scholar
  110. 110.
    J. Ellrich, B. Bromm, and H. C. Hopf, “Pain-evoked blink reflex,” Muscle Nerve, 20, 265–270 (1997).PubMedGoogle Scholar
  111. 111.
    G. D’Aleo, E. Sessa, P. D’Aleo, et al., “Nociceptive R3 reflex in relapsing-remitting multiple sclerosis patients,” Funct. Neurol., 14, No. 1, 43–47 (1999).PubMedGoogle Scholar
  112. 112.
    H. Göbel, L. Weigle, P. Kropp, and D. Soyka, “Pain sensitivity and pain reactivity of pericranial muscles in migraine and tension-type headache,” Cephalalgia, 12, Issue 3, 142–151 (1992).PubMedGoogle Scholar
  113. 113.
    J. Schoenen, “Tension-type headache: pathophysiologic evidence for a disturbance of limbic pathways to the brainstem,” Headache, 30, No. 5, 314–316 (1990).Google Scholar
  114. 114.
    G. N. Avakyan and U. F. Abdukhakimova, “Electrophysiological and clinical significance of early and late components of the blinking reflex and their role in diagnostics,” Korsakov Zh. Nevrol. Psikhiat., 88, No. 3, 39–43 (1988).Google Scholar
  115. 115.
    K. Nakamura, K. Sakamaki, H. Sizuku, and Y. Koike, “Determining the pathway of the blink reflex through transcutaneous electrical stimulation of the facial nerve over the stylomastoid foramen ORL,” J. Otorhinolaryngol. Relat. Spec., 61, No. 6, 350–354 (1999).Google Scholar
  116. 116.
    N. A. Syed, A. Delgado, F. Sandbrink, et al., “Blink reflex recovery in facial weakness: an electrophysiologic study of adaptive changes,” Neurology, 52, No. 4, 834–838 (1999).PubMedGoogle Scholar
  117. 117.
    M. F. Ismagilov, R. A. Yakupov, and A. A. Yakupova, “Electroneuromyographic study of the blinking reflex of tension headaches,” in: Proc. of VII All-Russian Congress of Neurologists [in Russian], Nizhnii Novgorod (1995), p. 479.Google Scholar
  118. 118.
    P. M. Lehrer and A. I. Murphy, “Stress reactivity and perception of pain among tension headache sufferers,” Behav. Res. Ther., 29, No. 1, 61–69 (1991).PubMedGoogle Scholar
  119. 119.
    G. Sandrini, L. Ruiz, and E. Alfonsi, “Antinociceptive system in primary headache disorders: a neurophysiological approach,” in: Headache and Depression: Serotonin Pathways as a Common Clue, G. Nappi et al. (eds.), Raven Press, New York (1991), pp. 61–78.Google Scholar
  120. 120.
    L. R. Zenkov and P. V. Mel’nichouk, “Pathogenetic interpretation of changes in somatosensory evoked brain potentials in multiple sclerosis,” Zh. Nevropatol. Psikhiat., 2, 33–39 (1983).Google Scholar
  121. 121.
    V. V. Gnezditskii, Evoked Brain Potentials in Clinical Practice [in Russian], TRTU, Taganrog (1997).Google Scholar
  122. 122.
    D. V. Davydov and E. S. Mikhailova, “Evoked cerebral activity related to identification of the face expression in the right and left vision semifields,” Fiziol. Cheloveka, 25, Issue 4, 26–35 (1999).PubMedGoogle Scholar
  123. 123.
    N. Yu. Aleksandrov, Evoked Potentials in the Diagnostics of Impairments of the Nervous System. Educational Methodical Manual [in Russian], Piter, Saint Petersburg (2001).Google Scholar
  124. 124.
    L. P. Zenkov and P. V. Mel’nichouk, Central Mechanisms of Afferentation in Humans [in Russian], Meditsina, Moscow (1985)Google Scholar
  125. 125.
    L. H. Smith and T. W. McKinley, Jr., “Radioprotection by phenylhydrazine: evaluation of stem cell radiosensitivity and potential stimulation of the reticuloendothelial system,” Proc. Soc. Exp. Biol. Med., 144, No. 1, 130–133 (1973).PubMedGoogle Scholar
  126. 126.
    S. M. Osovets, D. A. Ginsbourg, and V. S. Gurfinkel’, “Electrical activity of the brain: Mechanisms and interpretation,” Usp. Fiziol. Nauk, 141, Issue 1, 103–150 (1983).Google Scholar
  127. 127.
    K. Sato, H. Kitajima, K. Mimura, et al., “Cerebral visual evoked potentials in relation to EEG,” Electroencephalogr. Clin. Neurophysiol., 30, No. 2, 123–138 (1971).PubMedGoogle Scholar
  128. 128.
    H. Holmgren, G. Leijon, J. Boivie, et al., “Central poststroke pain–somatosensory evoked potentials in relation to location of the lesion and sensory signs,” Pain, 40, No. 1, 43–52 (1990).PubMedGoogle Scholar
  129. 129.
    M. Yamamoto, T. Kachi, and A. Igata, “Pain-related and electrically stimulated somatosensory evoked potentials in patients with stroke,” Stroke, 26, No. 3, 426–429 (1995).PubMedGoogle Scholar
  130. 130.
    R. Dowman, “Effects of operantly conditioning the amplitude of the P200 peak of the SEP on pain sensitivity and the spinal nociceptive withdrawal reflex in humans,” Psychophysiology, 33, No. 3, 252–261 (1996).PubMedGoogle Scholar
  131. 131.
    E. V. Yekusheva, M. I. Vendrova, A. B. Danilov, and A. M. Vein, “Contribution of the right and left cerebral hemispheres in the polymorphism and heterogeneity of the pyramidal syndrome,” Korsakov Zh. Nevrol. Psikhiat., No. 3, 8–12 (2004).Google Scholar
  132. 132.
    B. Rockstroh, T. Elbert, W. Lutzenberger, and N. Birbaumer, “The effects of slow cortical potentials on response speed,” Psychophysiology, 19, No. 2, 211–217 (1982).PubMedGoogle Scholar
  133. 133.
    J. C. Arezzo, H. G. Vaughan, and A. D. Legatt, “Topography and intracranial sources of somatosensory evoked potentials in the monkey. II. Cortical components,” Electroencephalogr. Clin. Neurophysiol., 51, No. 1, 1–18 (1981).PubMedGoogle Scholar
  134. 134.
    J. Zentner and A. Ebner, “Somatosensory and motor evoked potentials in the prognostic assessment of traumatic and non-traumatic comatose patients,” Elektroenzephalogr. Elektromyogr. Verwandte Geb., 19, No. 4, 267–271 (1988).Google Scholar
  135. 135.
    J. E. Desmedt, Huy Nguyen Tran, and M. Bourget, “The cognitive P40, N60, and P100 components of somatosensory evoked potentials and the earliest electrical signs of sensory processing in man,” Electroencephalogr. Clin. Neurophysiol., 56, 272–282 (1983).PubMedGoogle Scholar
  136. 136.
    G. A. Ivanichev and E. A. Kuznetsova, “Evoked cerebral potentials within the late residual period of natal cervical trauma,” Korsakov Zh. Nevrol. Psikhiat., 107, No. 4, 49–53 (2007).Google Scholar
  137. 137.
    A. V. Ovchinnikov, Somatosensory Evoked Potentials under Conditions of the Myophascial Pain Syndromes [in Russian], Abstr. of Cand. Thesis, Med. Sci., Kazan’ (2000).Google Scholar
  138. 138.
    E. N. Chuyan and É. R. Dzheldubayeva, Mechanisms of the Antinociceptive Action of Low-Intensity Millimeter-Wave Irradiation [in Russian], DIP, Simferopol’ (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Vernadskii Tavricheskii National UniversitySimferopol’Ukraine

Personalised recommendations