, Volume 41, Issue 1, pp 71–79 | Cite as

Functional Mixed-Effect Models for Electrophysiological Responses

  • D. J. Davidson
Open Access

In electro/psychophysiological experiments, linear mixed-effect modeling is an effective statistical technique for data repeatedly observed from the same experimental participants or stimulus items. This review describes the application of mixed-effect modeling to functional responses, in particular those observed in event-related EEG or MEG experiments, using a discrete wavelet transform. The technique is illustrated with a design with several covariates, and procedures for generating posterior samples and computing a Bayesian false discovery rate are described.


evoked potentials mixed-effect analysis wavelet false discovery rate stochastic process 


  1. 1.
    G. D. Dawson, A summation technique for detecting small signals in a large irregular background,” J. Physiol., 115, 2 (1951).Google Scholar
  2. 2.
    T. C. Handy, Event-Related Potentials: A Methods Handbook, MIT Press, Cambridge (2004).Google Scholar
  3. 3.
    L. Sornmo and P. Laguna, Bioelectric Signal Processing in Cardiac and Neurological Applications, Elsevier, Academic Press, Amsterdam (2005).Google Scholar
  4. 4.
    J. C. Pinheiro and D. M. Bates, Mixed-Effects Models in S and S-Plus, Springer, Berlin (2000).Google Scholar
  5. 5.
    H. Baayen, D. J. Davidson, and D. Bates, “Mixed-effects modeling with crossed random effects for subjects and items,” J. Memory Language, 59, 390–412 (2008).CrossRefGoogle Scholar
  6. 6.
    J. S. Morris and R. J. Carroll, “Wavelet-based functional mixed models,” J. Roy. Stat. Soc. Ser. B, 68, 179–199 (2006).CrossRefGoogle Scholar
  7. 7.
    S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., 11, 674–693 (1989).CrossRefGoogle Scholar
  8. 8.
    D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge Univ. Press, Cambridge (2000).Google Scholar
  9. 9.
    B. Vidakovic, Statistical Modeling by Wavelets, Wiley, New York (1999).CrossRefGoogle Scholar
  10. 10.
    A. Bruns, “Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different approaches?” J. Neurosci. Methods, 137, 321–332 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    M. K. van Vugt, P. B. Sederberg, and M. J. Kahana, “Comparison of spectral analysis methods for characterizing brain oscillations,” J. Neurosci. Methods, 162, 49–63 (2007).PubMedCrossRefGoogle Scholar
  12. 12.
    V. J. Samar, K. P. Swartz, M. R. Raghuveer, “Multiresolution analysis of event-related potentials by wavelet decomposition,” Brain Cognition, 27, 398–438 (1995).CrossRefGoogle Scholar
  13. 13.
    O. Bertrand, J. Bohorquez, and J. Pernier, “Time-frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials,” IEEE Trans. Biomed. Eng., 41, 77–88 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    E. A. Bartnik, K. J. Blinowska, P. J. Durka, “Single evoked potential reconstruction by means of wavelet transform,” Biol. Cybern., 67, 175–181 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    N. V. Thakor, G. Xin-Rong, S. Yi-Chun, and D. F. Hanley, “Multiresolution wavelet analysis of evoked potentials,” IEEE Trans. Biomed. Eng., 40, 1085–1094 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Demiralp, J. Yordanova, V. Kolev, et al., “Time-frequency analysis of single-sweep event-related potentials by means of fast wavelet transform,” Brain Language, 66, 129–145 (1999).CrossRefGoogle Scholar
  17. 17.
    S. J. Kiebel and K. J. Friston, “Statistical parametric mapping for event-related potentials (II): A hierarchical temporal model,” Neuroimage, 22, 503–520 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Raz, B. I. Turetsky, and L. W. Dickerson, “Inference for a random wavelet packet model of single-channel event-related potentials,” J. Am. Statist. Assoc., 96, 409–420 (2001).CrossRefGoogle Scholar
  19. 19.
    X. F. Wang, Q. Yang, Z. Fan, et al., “Assessing time- dependent association between scalp EEG and muscle activation: A functional random-effects model approach,” J. Neurosci. Methods, 177, 232–240 (2009).PubMedCrossRefGoogle Scholar
  20. 20.
    D. L. Donoho and I. M. Johnstone, “Minimax estimation via wavelet shrinkage,” Annu. Statistics, 26, 879–921 (1998).CrossRefGoogle Scholar
  21. 21.
    R. Quian Quiroga and H. Garcia, “Single-trial event-related potentials with wavelet denoising,” Clin. Neurophysiol., 114, 376–390 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    Z. Wang, A. Maier, D. A. Leopold, et al., “Single-trial evoked potential estimation using wavelets,” Comput. Biol. Med., 37, 463–473 (2007).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Effern, K. Lehnertz, T. Grunwald, et al., “Time adaptive denoising of single trial event-related potentials in the wavelet domain,” Psychophysiology, 37, 859–865 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Effern, K. Lehnertz, G. Fernandez, et al., “Single trial analysis of event-related potentials: Non-linear denoising with wavelets,” Clin. Neurophysiol., 111, 2255–2263 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Effern, K. Lehnertz, T. Schreiber, et al., “Nonlinear denoising of transient signal with application to event related potentials,” Physica D, 140, 257–266 (2000c).CrossRefGoogle Scholar
  26. 26.
    B. M. Sayers, H. A. Beagley, and W. R. Henshall, “The mechanism of auditory evoked EEG responses,” Nature, 247, 481–483 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Basar, EEG-Brain Dynamics: Relation between EEG and Brain Evoked Potentials, Elsevier, New York (1980).Google Scholar
  28. 28.
    O. Hauk and F. Pulvermüller, “Effects of word length and frequency on the human event-related potential,” Clin. Neurophysiol., 115, 1090–1103 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    O. Hauk, M. H. Davis, M. Ford, et al., “The time course of visual word recognition as revealed by linear regression analysis of ERP data,” Neuroimage, 30, 1383–1400 (2006).PubMedCrossRefGoogle Scholar
  30. 30.
    S. G. Costafreda, G. J. Barker, and M. J. Brammer, “Bayesian wavelet-based analysis of functional magnetic resonance time series,” Magn. Res. Imaging, Nov. 5 (2008).Google Scholar
  31. 31.
    M. J. Fadili and E. T. Bullmore, “A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps,” Neuroimage, 23, 1112–1128 (2004).PubMedCrossRefGoogle Scholar
  32. 32.
    L. Sendur, J. Suckling, B. Whitcher, and E. Bullmore, “Resampling methods for improved wavelet-based multiple hypothesis testing of parametric maps in functional MRI,” Neuroimage, 37, 1186–1194 (2007).PubMedCrossRefGoogle Scholar
  33. 33.
    G. A. Miller, W. Lutzenberger, and R. Ulrich, “A jackknife-based method for measuring LRP onset latency differences,” Psychophysiology, 35, 99–115 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    D. Guthrie and J. S. Buchwald, “Significance testing of difference potentials,” Psychophysiology, 28, 240–244 (1991).PubMedCrossRefGoogle Scholar
  35. 35.
    R. C. Blair and W. Karniski, “An alternative method for significance testing of waveform difference potentials,” Psychophysiology, 30, 518–524 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    A. Achim, “Signal detection in averaged evoked potentials: Monte Carlo comparison of the sensitivity of different methods,” Electroencephalogr. Clin. Neurophysiol., 96, 574–584 (1995).PubMedCrossRefGoogle Scholar
  37. 37.
    E. Maris and R. Oostenveld, “Nonparametric statistical testing of EEG- and MEG-data,” J. Neurosci. Methods, 164, 177–190 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    N. Laird and J. H. Ware, “Random-effects models for longitudinal data,” Biometrics, 38, 963–974 (1982).PubMedCrossRefGoogle Scholar
  39. 39.
    W. S. Guo, “Functional mixed effect models,” Biometrics, 58, 121–128 (2002).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Antoniadis and T. Sapatinas, “Estimation and inference in functional mixed-effects models,” Comput. Stat. Data Anal., 51, 4793–4813 (2007).CrossRefGoogle Scholar
  41. 41.
    F. Abramovich, A. Antoniadis, T. Sapatinas, and B. Vidakovic, “Optimal testing in a fixed effects functional analysis of variance model,” Int. J. Wavelets, Multiresolution Inform. Proc., 2, 323–349 (2004).CrossRefGoogle Scholar
  42. 42.
    C. Bugli and P. Lambert, “Functional ANOVA with random functional effects: an application to event-related potentials modeling for electroencephalograms analysis,” Stat. Med., 25, 3718–3739 (2006).PubMedCrossRefGoogle Scholar
  43. 43.
    A. P. Dawid, “Some matrix-variate distribution theory: Notational considerations and a Bayesian application,” Biometrika, 68, 265–274 (1981).CrossRefGoogle Scholar
  44. 44.
    J. S. Morris, P. J. Brown, R. C. Herrick, et al., “Bayesian analysis of mass spectrometry proteomic data using wavelet based functional mixed models,” Biometrics, 64, 479–489 (2008).PubMedCrossRefGoogle Scholar
  45. 45.
    D. J. Davidson and P. Indefrey, “An inverse relation between event-related and time-frequency violation responses in sentence processing,” Brain Res., 1158, 81–92 (2007).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Kutas and S. A. Hillyard, “Reading senseless sentences: Brain potentials reflect semantic incongruity,” Science, 207, 203–205 (1980).PubMedCrossRefGoogle Scholar
  47. 47.
    R. H. Baayen, R. Piepenbrock, and L. Gulikers, The CELEX Lexical Functional mixed effects 27 Database (Release 2) [CD-ROM], Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania [Distributor]. (1995).Google Scholar
  48. 48.
    G. W. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach, Upper Saddle River, NJ, Prentice-Hall. (1996).Google Scholar
  49. 49.
    E. Bullmore, C. Long, J. Suckling, J., et al., “Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains,” Human Brain Mapping, 12, 61–78 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations