Skip to main content
Log in

Effect of Lipids on the Activity of Calpain in Subcellular Fractions Obtained from the Rat Brain

  • Published:
Neurophysiology Aims and scope

We studied the effect of lipids on the activity of a neutral cysteine proteinase, calpain, in subcellular fractions obtained from the rat brain. Extraction of nearly 23% of membrane cholesterol from the coarse mitochondrial fraction did not result in modifications of specific activity of calpain in this fraction. Detergents (digitonin or Triton Х-100) used in 0.3% concentration enhanced the activity of calpain in the coarse mitochondrial fraction. Examination of the effects of preparations of different phospholipids on the activity of calpain in the cytoplasm demonstrated that only phosphatidylcholine, but not phosphatidylserine and/or cardiolipin, insignificantly increased the activity of calpain (independently of the size and structure of phospholipid vesicles). We hypothesize that the mechanisms underlying interaction between calpain and lipids are not universal; in native cells and model experiments, they can differ noticeably from each other and are modified depending on the corresponding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lynch and M. Baudry, “The biochemistry of memory: a new and specific hypothesis,” Science, 224, No. 4653, 1057–1063 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. T. F. Kastrykina and M. K. Malysheva, “Calpain as one of the calcium signal mediators in the cell,” Neurophysiology, 32, No. 2, 111–124 (2000).

    Article  Google Scholar 

  3. L. Casaletti, S. Tauhata, J. Moreira, and R. Larson, “Myosin-Va proteolysis by Ca2+/calpain in depolarized nerve endings from rat brain,” Biochem. Biophys. Res. Commun., 308, No. 1, 159–164 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. D. Goll, V. Thompson, H. Li, et al., “The calpain system,” Physiol. Rev., 83, No. 3, 731–801 (2003).

    PubMed  CAS  Google Scholar 

  5. K. Takeuchi, K. Saito, and R. Nixon, “Immunoassay and activity of calcium-activated neutral proteinase (mCANP): distribution in soluble and membrane-associated fractions in human and mouse brain,” J. Neurochem., 58, No. 4, 1526–1532 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. N. Banik, A. Chakrabarti, and E. Hogan, “Effects of detergents on Ca-activated neural proteinase (calpain) in neural and non-neural tissue: a comparative study,” Neurochem. Res., 17, No. 8, 797–802 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. F. Zalewska, B. Zablocka, T. Saido, et al., “Dual response of calpain to rat brain postdecapitative ischemia,” Mol. Chem. Neuropathol., 33, No. 3, 185–197 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. G. Broutman and M. Baudry, “Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus,” J. Neurosci., 21, No. 1, 27–34 (2001).

    PubMed  CAS  Google Scholar 

  9. U. Zimmerman, S. Malek, L. Liu, and H. Li, “Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells,” IUBMB Life, 48, No. 4, 453–458 (1999).

    PubMed  CAS  Google Scholar 

  10. K. Blomgren, A. McRae, A. Elmerd, et al., “The calpain proteolytic system in neonatal hypoxic ischemia,” Ann. N.Y. Acad. Sci., 825, 104–119 (1997).

    Article  CAS  Google Scholar 

  11. G. DiRosa, T. Odrijin, R. Nixon, and O. Arancio, “Calpain inhibitors: a treatment for Alzheimer’s disease,” J. Mol. Neurosci., 19, Nos. 1/2, 135–141 (2002).

    Article  CAS  Google Scholar 

  12. H. Wu, K. Tomizawa, Y. Oda, et al., “Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration,” J. Biol. Chem., 279, No. 6, 4929–4940 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. K. Wang, S. Lamer, G. Robinson, and R. Hayes, “Neuroprotection targets after traumatic brain injury,” Curr. Opin. Neurol., 19, No. 6, 514–519 (2006).

    Article  PubMed  Google Scholar 

  14. R. Sinjoanu, S. Kleinschmidt, R. Bitner, et al., “The novel calpain inhibitor A-705253 potently inhibits oligomeric beta-amyloid-induced dynamin 1 and tau cleavage in hippocampal neurons,” Neurochem. Int., 53, Nos. 3/4, 79–88 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. M. Molinari and E. Carafoli, “Calpain: a cytosolic proteinase active at the membranes,” J. Membr. Biol., 156, No. 1, 1–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. T. Yoschizawa, H. Sorimachi, S. Tomioka, et al., “Calpain dissociates into subunits in the presence of calcium ions,” Biochem. Biophys. Res. Commun., 208, No. 1, 376–383 (1995).

    Article  Google Scholar 

  17. H. Kawasaki and S. Kawashima, “Regulation of the calpain-calpastatin system by membranes,” Mol. Membr. Biol., 13, No. 4, 217–224 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. L. I. Kolchinskay and M. K. Malysheva, “Activity of calpain in subcellular fractions of the rat brain,” Neurophysiology, 36, No. 4, 231–237 (2004).

    Google Scholar 

  19. C. Garret, P. Cottin, J. Dufourcq, and A. Ducastaing, “Evidence for a Ca2+-independent association between calpain II and phospholipids vesicles,” FEBS Lett., 227, No. 2, 209–214 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. A. Fernandez-Montalvan, I. Assflag-Machleidt, D. Pfeiler, et al., “mu-Calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2+-activated conformation,” J. Biol. Chem., 387, No. 5, 617–627 (2006).

    Article  CAS  Google Scholar 

  21. S. Pontremoli, E. Melloni, B. Sparatore, et al., “Role of phospholipids in the activation of the Ca2+-dependent neutral proteinase of human erythrocytes,” Biochem. Biophys. Res. Commun., 129, No. 2, 389–395 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. S. Coolican and D. Hathaway, “Effect of L-alpha-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis,” J. Biol. Chem., 259, No. 19, 11627–11630 (1984).

    PubMed  CAS  Google Scholar 

  23. T. Saido, M. Shibata, T. Takenawa, et al., “Positive regulation of mu-calpain action by polyphosphoinositides,” J. Biol. Chem., 267, No. 34, 24585–24590 (1992).

    PubMed  CAS  Google Scholar 

  24. A. Chakrabarti, S. Dasgupta, R. Gadshen, et al., “Regulation of brain m-calpain Ca2+ sensitivity by mixtures of membrane lipids: activation by intracellular Ca2+ level,” J. Neurosci. Res., 44, No. 4, 374–380 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. C. Sprague, T. Traley, H. Jang et al., “Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain,” J. Biol. Chem., 283, No. 14, 9217–9223 (2008).

    Article  PubMed  CAS  Google Scholar 

  26. D. Brown and E. London, “Structure and function of sphingolipid- and cholesterol-rich membrane rafts,” J. Biol. Chem., 275, No. 23, 17221–17224 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. L. Morford, K. Forrest, B. Logan, et al., “Calpain II colocalizes with detergent-insoluble rafts on human and Jurkat T-cells,” Biochem. Biophys. Res. Commun., 295, No. 2, 540–546 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. S. Goudeneqe, E. Darqelos, S. Claverol, et al., “Comparative proteomic analysis of myotube caveolae after milli-calpain deregulation,” Proteomics, 7, No. 18, 3289–3298 (2007).

    Article  CAS  Google Scholar 

  29. P. Nuzzi, M. Senetar, and A. Huttenlocher, “Asymmetric localization of calpain 2 during neutrophil chemotaxis,” Mol. Biol. Cell, 18, No. 3, 795–805 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. E. Babiychuk, K. Monastyrskaya, F. Burkhard, et al., “Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts,” FASEB J., 16, No. 10, 1177–1184 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. O. Lowry, N. Rosenberg, A. Farr, et al., “Protein measurement with the Folin phenol reagent,” J. Biol. Chem., 193, No. 1, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  32. H. Maeda, “Assay of proteolytic enzymes by the fluorescence polarization technique,” Anal. Biochem., 92, No. 1, 222–227 (1979).

    Article  PubMed  CAS  Google Scholar 

  33. A. Zlatkis, B. Zak, and A. Boyle, “A new method for the direct determination of serum cholesterol,” J. Lab. Clin. Med., 41, No. 3, 486–492 (1953).

    PubMed  CAS  Google Scholar 

  34. P. Yancey, W. Rodrigueza, E. Kilsdonk, et al., “Cellular cholesterol effluxmediatedbycyclodextrins.Demonstrationof kinetic pools and mechanism of efflux,” J. Biol. Chem., 271, No. 27, 16026–16034 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. J. Hood, B. Logan, P. Sinai, et al., “Association of the calpain/calpastatin network with subcellular organelles,” Biochem. Biophys. Res. Commun., 310, No. 4, 1200–1212 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. K. Haim, I. Ben-Aharon, and R. Shalgi, “Expression and immunolocalization of the calpain-calpastatin system during parthenogenetic activation and fertilization in the rat egg,” Reproduction, 131, No. 1, 35–43 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. A. Kishimoto, N. Kajikawa, M. Shiota, and Y. Nishizuka, “Proteolytic activation of calcium-activated, phospholipids-dependent protein kinase by calcium-dependent neutral protease,” J. Biol. Chem., 258, No. 2, 1156–1164 (1983).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Kolchinskaya.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 3–9, January–February, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolchinskaya, L.I., Тrikash, I.O., Gumenyuk, V.P. et al. Effect of Lipids on the Activity of Calpain in Subcellular Fractions Obtained from the Rat Brain. Neurophysiology 41, 1–7 (2009). https://doi.org/10.1007/s11062-009-9077-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-009-9077-0

Keywords

Navigation