Advertisement

Neurophysiology

, Volume 41, Issue 1, pp 1–7 | Cite as

Effect of Lipids on the Activity of Calpain in Subcellular Fractions Obtained from the Rat Brain

  • L. I. Kolchinskaya
  • I. O. Тrikash
  • V. P. Gumenyuk
  • M. K. Malysheva
Article
  • 30 Downloads

We studied the effect of lipids on the activity of a neutral cysteine proteinase, calpain, in subcellular fractions obtained from the rat brain. Extraction of nearly 23% of membrane cholesterol from the coarse mitochondrial fraction did not result in modifications of specific activity of calpain in this fraction. Detergents (digitonin or Triton Х-100) used in 0.3% concentration enhanced the activity of calpain in the coarse mitochondrial fraction. Examination of the effects of preparations of different phospholipids on the activity of calpain in the cytoplasm demonstrated that only phosphatidylcholine, but not phosphatidylserine and/or cardiolipin, insignificantly increased the activity of calpain (independently of the size and structure of phospholipid vesicles). We hypothesize that the mechanisms underlying interaction between calpain and lipids are not universal; in native cells and model experiments, they can differ noticeably from each other and are modified depending on the corresponding conditions.

Keywords

calpain cholesterol phospholipids activation of an enzyme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lynch and M. Baudry, “The biochemistry of memory: a new and specific hypothesis,” Science, 224, No. 4653, 1057–1063 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    T. F. Kastrykina and M. K. Malysheva, “Calpain as one of the calcium signal mediators in the cell,” Neurophysiology, 32, No. 2, 111–124 (2000).CrossRefGoogle Scholar
  3. 3.
    L. Casaletti, S. Tauhata, J. Moreira, and R. Larson, “Myosin-Va proteolysis by Ca2+/calpain in depolarized nerve endings from rat brain,” Biochem. Biophys. Res. Commun., 308, No. 1, 159–164 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Goll, V. Thompson, H. Li, et al., “The calpain system,” Physiol. Rev., 83, No. 3, 731–801 (2003).PubMedGoogle Scholar
  5. 5.
    K. Takeuchi, K. Saito, and R. Nixon, “Immunoassay and activity of calcium-activated neutral proteinase (mCANP): distribution in soluble and membrane-associated fractions in human and mouse brain,” J. Neurochem., 58, No. 4, 1526–1532 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    N. Banik, A. Chakrabarti, and E. Hogan, “Effects of detergents on Ca-activated neural proteinase (calpain) in neural and non-neural tissue: a comparative study,” Neurochem. Res., 17, No. 8, 797–802 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    F. Zalewska, B. Zablocka, T. Saido, et al., “Dual response of calpain to rat brain postdecapitative ischemia,” Mol. Chem. Neuropathol., 33, No. 3, 185–197 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Broutman and M. Baudry, “Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus,” J. Neurosci., 21, No. 1, 27–34 (2001).PubMedGoogle Scholar
  9. 9.
    U. Zimmerman, S. Malek, L. Liu, and H. Li, “Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells,” IUBMB Life, 48, No. 4, 453–458 (1999).PubMedGoogle Scholar
  10. 10.
    K. Blomgren, A. McRae, A. Elmerd, et al., “The calpain proteolytic system in neonatal hypoxic ischemia,” Ann. N.Y. Acad. Sci., 825, 104–119 (1997).CrossRefGoogle Scholar
  11. 11.
    G. DiRosa, T. Odrijin, R. Nixon, and O. Arancio, “Calpain inhibitors: a treatment for Alzheimer’s disease,” J. Mol. Neurosci., 19, Nos. 1/2, 135–141 (2002).CrossRefGoogle Scholar
  12. 12.
    H. Wu, K. Tomizawa, Y. Oda, et al., “Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration,” J. Biol. Chem., 279, No. 6, 4929–4940 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Wang, S. Lamer, G. Robinson, and R. Hayes, “Neuroprotection targets after traumatic brain injury,” Curr. Opin. Neurol., 19, No. 6, 514–519 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Sinjoanu, S. Kleinschmidt, R. Bitner, et al., “The novel calpain inhibitor A-705253 potently inhibits oligomeric beta-amyloid-induced dynamin 1 and tau cleavage in hippocampal neurons,” Neurochem. Int., 53, Nos. 3/4, 79–88 (2008).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Molinari and E. Carafoli, “Calpain: a cytosolic proteinase active at the membranes,” J. Membr. Biol., 156, No. 1, 1–8 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Yoschizawa, H. Sorimachi, S. Tomioka, et al., “Calpain dissociates into subunits in the presence of calcium ions,” Biochem. Biophys. Res. Commun., 208, No. 1, 376–383 (1995).CrossRefGoogle Scholar
  17. 17.
    H. Kawasaki and S. Kawashima, “Regulation of the calpain-calpastatin system by membranes,” Mol. Membr. Biol., 13, No. 4, 217–224 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    L. I. Kolchinskay and M. K. Malysheva, “Activity of calpain in subcellular fractions of the rat brain,” Neurophysiology, 36, No. 4, 231–237 (2004).Google Scholar
  19. 19.
    C. Garret, P. Cottin, J. Dufourcq, and A. Ducastaing, “Evidence for a Ca2+-independent association between calpain II and phospholipids vesicles,” FEBS Lett., 227, No. 2, 209–214 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Fernandez-Montalvan, I. Assflag-Machleidt, D. Pfeiler, et al., “mu-Calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2+-activated conformation,” J. Biol. Chem., 387, No. 5, 617–627 (2006).CrossRefGoogle Scholar
  21. 21.
    S. Pontremoli, E. Melloni, B. Sparatore, et al., “Role of phospholipids in the activation of the Ca2+-dependent neutral proteinase of human erythrocytes,” Biochem. Biophys. Res. Commun., 129, No. 2, 389–395 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Coolican and D. Hathaway, “Effect of L-alpha-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis,” J. Biol. Chem., 259, No. 19, 11627–11630 (1984).PubMedGoogle Scholar
  23. 23.
    T. Saido, M. Shibata, T. Takenawa, et al., “Positive regulation of mu-calpain action by polyphosphoinositides,” J. Biol. Chem., 267, No. 34, 24585–24590 (1992).PubMedGoogle Scholar
  24. 24.
    A. Chakrabarti, S. Dasgupta, R. Gadshen, et al., “Regulation of brain m-calpain Ca2+ sensitivity by mixtures of membrane lipids: activation by intracellular Ca2+ level,” J. Neurosci. Res., 44, No. 4, 374–380 (1996).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Sprague, T. Traley, H. Jang et al., “Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain,” J. Biol. Chem., 283, No. 14, 9217–9223 (2008).PubMedCrossRefGoogle Scholar
  26. 26.
    D. Brown and E. London, “Structure and function of sphingolipid- and cholesterol-rich membrane rafts,” J. Biol. Chem., 275, No. 23, 17221–17224 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Morford, K. Forrest, B. Logan, et al., “Calpain II colocalizes with detergent-insoluble rafts on human and Jurkat T-cells,” Biochem. Biophys. Res. Commun., 295, No. 2, 540–546 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Goudeneqe, E. Darqelos, S. Claverol, et al., “Comparative proteomic analysis of myotube caveolae after milli-calpain deregulation,” Proteomics, 7, No. 18, 3289–3298 (2007).CrossRefGoogle Scholar
  29. 29.
    P. Nuzzi, M. Senetar, and A. Huttenlocher, “Asymmetric localization of calpain 2 during neutrophil chemotaxis,” Mol. Biol. Cell, 18, No. 3, 795–805 (2007).PubMedCrossRefGoogle Scholar
  30. 30.
    E. Babiychuk, K. Monastyrskaya, F. Burkhard, et al., “Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts,” FASEB J., 16, No. 10, 1177–1184 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    O. Lowry, N. Rosenberg, A. Farr, et al., “Protein measurement with the Folin phenol reagent,” J. Biol. Chem., 193, No. 1, 265–275 (1951).PubMedGoogle Scholar
  32. 32.
    H. Maeda, “Assay of proteolytic enzymes by the fluorescence polarization technique,” Anal. Biochem., 92, No. 1, 222–227 (1979).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Zlatkis, B. Zak, and A. Boyle, “A new method for the direct determination of serum cholesterol,” J. Lab. Clin. Med., 41, No. 3, 486–492 (1953).PubMedGoogle Scholar
  34. 34.
    P. Yancey, W. Rodrigueza, E. Kilsdonk, et al., “Cellular cholesterol effluxmediatedbycyclodextrins.Demonstrationof kinetic pools and mechanism of efflux,” J. Biol. Chem., 271, No. 27, 16026–16034 (1996).PubMedCrossRefGoogle Scholar
  35. 35.
    J. Hood, B. Logan, P. Sinai, et al., “Association of the calpain/calpastatin network with subcellular organelles,” Biochem. Biophys. Res. Commun., 310, No. 4, 1200–1212 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    K. Haim, I. Ben-Aharon, and R. Shalgi, “Expression and immunolocalization of the calpain-calpastatin system during parthenogenetic activation and fertilization in the rat egg,” Reproduction, 131, No. 1, 35–43 (2006).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Kishimoto, N. Kajikawa, M. Shiota, and Y. Nishizuka, “Proteolytic activation of calcium-activated, phospholipids-dependent protein kinase by calcium-dependent neutral protease,” J. Biol. Chem., 258, No. 2, 1156–1164 (1983).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • L. I. Kolchinskaya
    • 1
  • I. O. Тrikash
    • 2
  • V. P. Gumenyuk
    • 2
  • M. K. Malysheva
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Palladin Institute of BiochemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations