, Volume 40, Issue 5–6, pp 412–416 | Cite as

Nature of Electrical Tristability in a Neuron Model with Bistable Asymmetrical Dendrites


In a three-compartmental neuron model with two metrically asymmetrical dendrites, we defined the geometry-related conditions for the occurrence of electrical tristability of the cell. The modelled neuron contained a monostable passive soma and dendrites with the bistable membrane, whose active properties were due to the presence of NMDA-type channels responsible for a persistent inward current. The geometrical prerequisite for tristability was the metrical asymmetry due to the difference between the dendritic lengths. This feature caused unequal coupling of lateral currents, endowing the whole-cell input current-voltage relation with additional stable steady states. The existence of a certain range of geometrical parameters of the dendrites critical for whole-cell tristability was found.


neuron models dendrites electrical properties metrical asymmetry electrical tristability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Gutman, Dendrites of Nerve Cells. Theory, Electrophysiology, Function, Vilnius, Mokslas (1984).Google Scholar
  2. 2.
    O. Kiehn, “Plateau potentials and active integration in the ‘final common pathway’ for motor behavior,” Trends Neurosci., 14, No. 2, 68–73 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    O. Kiehn and T. Eken, “Functional role of plateau potentials in vertebrate motor neurons,” Curr. Opin. Neurobiol., 8, 746–752 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    O. Bernander, C. Koch, and M. Usher, “The effects of synchronized inputs at the single neuron level,” Neural Comput., 6, 622–641 (1994).CrossRefGoogle Scholar
  5. 5.
    J. Durand, “Synaptic excitation triggers oscillations during NMDA receptor activation in rat abducent motoneurons,” Eur. J. Neurosci., 5, 1389–1397 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Lipowsky, T. Gillessen, and C. Alzheimer, “Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells,” J. Neurophysiol., 76, No. 4, 2181–2191 (1996).PubMedGoogle Scholar
  7. 7.
    Y. Loewenstein, S. Mahon, P. Chadderton, et al., “Bistability of cerebellar Purkinje cells modulated by sensory stimulation,” Nat. Neurosci., 8, No. 2, 202–211 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Mynlieff and K. G. Beam, “Characterization of voltage-dependent calcium currents in mouse motoneurons,” J. Neurophysiol., 68, No. 1, 85–92 (1992).PubMedGoogle Scholar
  9. 9.
    P.C. Schwindt and W. E. Crill, “Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons,” J. Neurophysiol., 74, No. 5, 2220–2224 (1995).PubMedGoogle Scholar
  10. 10.
    S. M. Korogod, I. B. Kulagina, J. Durand, and S. Tyč-Dumont, “Electrical multistability of the dendritic arborization receiving tonic NMDA activation: a simulation study on reconstructed abducens motoneuron,” in: Proc. of the 3 rd Forum of European Neuroscience (Paris, Palais des Congres, July 13–17, FENS Abstr.), Vol. 1, A058.9 (2002).Google Scholar
  11. 11.
    G. Svirskis, N. Svirskene, and A. Gutman, “The theoretical analysis of multistability of pyramidal neurons,” Biofizika, 43, 87–91 (1998).PubMedGoogle Scholar
  12. 12.
    S. M. Korogod and I. B. Kulagina, “Electrical bistability in a neuron model with monostable dendritic and axosomatic membrane,” Neurophysiology, 32, No. 2, 73–76 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Hines, “NEURON – a program for simulation of nerve equations,” in: Neural Systems: Analysis and Modeling, F. Eeckman (ed.), Kluwer Acad. Publ., Norwell MA (1993), pp. 127–136.Google Scholar
  14. 14.
    L. Brodin, H. G. C. Traven, A. Lansner, et al., “Computer simulation of N-methyl-D-aspartate (NMDA) receptor-induced membrane properties in a neuron model,” J. Neurophysiol., 66, 473–484 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Dnepropetrovsk National UniversityDnepropetrovskUkraine

Personalised recommendations