Skip to main content
Log in

Kinetic Analysis of the Calcium- and Cadmium-Induced Development of Nonspecific Permeability of the Mitochondrial Inner Membrane

  • Published:
Neurophysiology Aims and scope

We studied the Са2+- and Cd2+-induced development of the nonspecific permeability of the mitochondrial inner membrane in preparations obtained from rat liver tissue, which is accompanied by swelling of these organelles and intensification of light dispersion of their suspension. Addition of 5 to 100 μM Са2+ or 1 to 50 μM Сd2+ to the medium caused swelling of the mitochondria. With increase in concentrations of Са2+ and Cd2+, the latency of the effect decreased, and the rate of swelling of these organelles increased. Upon isolated action of Са2+, the intensity of the process (amplitude of changes) did not depend significantly on the concentration of the above ions, while upon isolated action of Cd2+, it was the maximum at the concentration of 1 mM and noticeably decreased with increase in the concentration. The dependence of the rate of Са2+- and Cd2+-induced swelling of the mitochondria on the concentration of these ions was described by power and sigmoid functions, respectively. The calculated maximum rate and the constant of 50% saturation of these processes were equal to 0.609 and 1.084 extinction units/min⋅mg protein and 19.85 and 7.28 μM for Са2+- and Cd2+-induced swelling of the mitochondria, respectively. Cyclosporine A (10 μM) suppressed completely the Са2+-induced swelling of the mitochondria and decreased only partly the Cd2+-induced swelling. Dithiothreitol (1 mM) inhibited completely the latter effect but did not influence significantly the Са2+-stimulated process. Therefore, the distinctions between the kinetics of Са2+- and Cd2+-induced swelling of the mitochondria, as well as the different sensitivity of these processes to cyclosporine A and dithiothreitol, prove that the mechanisms underlying interactions between the cations of the above metals and the inner mitochondrial membrane in the course of the development of nonspecific permeability of these organelles are dissimilar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Kinnally, D. Zorov, Y. Antonenko, and S. Perini, “Calcium modulation of mitochondrial inner membrane channel activity,” Biochem. Biophys. Res. Commun., 176, No. 3, 1183–1188 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. I. Szabo and M. Zoratti, “The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A,” J. Biol. Chem., 266, 3376–3379 (1991).

    PubMed  CAS  Google Scholar 

  3. I. Szabo, P. Bernardi, and M. Zoratti, “Modulation of the mitochondrial megachannel by divalent cations and protons,” J. Biol. Chem., 267, 2940–2946 (1992).

    PubMed  CAS  Google Scholar 

  4. I. Szabo and M. Zoratti, “The mitochondrial megachannel is the permeability transition pore,” J. Bioenerg. Biomembr., 24, No. 1, 111–117 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. I. Szabo and M. Zoratti, “The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore,” FEBS Lett., 330, No. 2, 201–205 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. T. E. Gunter and D. R. Pfeiffer, “Mechanisms by which mitochondria transport calcium,” Am. J. Physiol., 258, C755–C786 (1990).

    PubMed  CAS  Google Scholar 

  7. M. Zoratti and I. Szabo, “The mitochondrial permeability transition,” Biochim. Biophys. Acta, 1241, No. 2, 139–176 (1995).

    PubMed  Google Scholar 

  8. T. E. Gunter, D. I. Yule, K. K. Gunter, et al., “Calcium and mitochondria,” FEBS Lett., 567, 96–102 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. G. Kroemer, L. Galluzzi, and C. Brenner, “Mitochondrial membrane permeabilization in cell death,” Physiol. Rev., 87, 99–163 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. M. Crompton, “Mitochondrial intermembrane junctional complexes and their role in cell death,” J. Physiol., 529, 11–21 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. D. Nicholls and K. Akerman, “Mitochondrial calcium transport,” Biochim. Biophys. Acta, 683, No. 1, 57–88 (1982).

    PubMed  CAS  Google Scholar 

  12. J. O. Jarvisalo, J. Kilpio, and N. E. Saris, “Toxicity of cadmium to renal mitochondria when administered in vivo and in vitro,” Environ. Res., 22, No. 1, 217–233 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. O. V. Akopova and V. F. Sagach, “Induction of the opening of mitochondrial pore upon the action of Са2+ in the rat myocardium,” Ukr. Biokhim. Zh., 76, No. 1, 48–55 (2004).

    PubMed  CAS  Google Scholar 

  14. W.-K. Lee, U. Bork, F. Gholamrezaei, and F. Thévenod, “Cd2+-induced cytochrome C release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter,” Am. J. Physiol. Renal. Physiol., 288, F27–F39 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. R. A. Haworth and D. R. Hunter, “The Ca2+-inducedmembrane transition in mitochondria. II. Nature of the Ca2+ trigger site,” Arch. Biochem. Biophys., 195, No. 2, 460–467 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. S. A. Novgorodov, T. I. Gudz, Y. M. Milgrom, and G. P. Brierley, “The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporine A,” J. Biol. Chem., 267, 16274–16282 (1992).

    PubMed  CAS  Google Scholar 

  17. P. Bernardi, P. Veronese, and V. Petronilli, “Modulation of the mitochondrial cyclosporine A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability,”J. Biol. Chem., 268, 1005–1010 (1993).

    PubMed  CAS  Google Scholar 

  18. G. P. Brierley, R. N. Bhattacharyya, and B. A. Shearman, “Ion transport by heart mitochondria. VII. Activation of the energy-linked accumulation of Mg++ by Zn++ and other cations,” J. Biol. Chem., 242, 1115–1122 (1967).

    PubMed  CAS  Google Scholar 

  19. B. K. Rasheed, J. J. Diwan, and D. R. Sanadi, “Activation of potassium ion transport in mitochondria by cadmium ion,” J. Biochem., 144, No. 3, 643–647 (1984).

    CAS  Google Scholar 

  20. E. A. Belyaeva, V. V. Glazunov, E. R. Nikitina, and S. M. Korotkov, “Bivalent metal ions modulate Cd2+ effects on isolated rat liver mitochondria,” J. Bioenerg. Biomembranes, 33, No. 4, 303–318 (2001).

    Article  CAS  Google Scholar 

  21. E. A. Belyaeva, V. V. Glazunov, and S. M. Korotkov, “Cyclosporine A-sensitive permeability transition pore is involved in Cd2+-induced dysfunction of isolated rat liver mitochondria: doubts no more,” Arch. Biochem. Biophys., 405, No. 2, 252–264 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. M. R. Duchen, O. McGuinness, L. A. Brown, et al., “On the involvement of a cyclosporine A-sensitive mitochondrial pore in myocardial reperfusion injury,” Cardiovascul. Res., 27, 1790–1794 (1993).

    Article  CAS  Google Scholar 

  23. A. Lehninger, The Mitochondrion. Molecular Basis of Structure and Function [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  24. W. C. Schneider and G. H. Hogeboom, “Intracellular distribution of enzymes. Further studies of the distribution of cytochrome C in rat liver homogenates,” J. Biol. Chem., 183, 123–128 (1950).

    CAS  Google Scholar 

  25. J. H. Lowry, N. J. Rosenbrough, A. L. Farr, et al., “Protein measurements with Folin protein reagent,” J. Biol. Chem., 193, No. 1, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  26. B. Chance and G. Williams, “Respiratory enzymes in oxidative phosphorylation. Kinetics of oxygen utilization,” J. Biol. Chem., 217, 383–393 (1955).

    PubMed  CAS  Google Scholar 

  27. D. R. Hunter, R. A. Haworth, and J. H. Southard, “Relationship between configuration, function, and permeability in calcium-treated mitochondria,” J. Biol. Chem., 251, 5069–5077 (1976).

    PubMed  CAS  Google Scholar 

  28. L. S. Vovkanych, Effects of Cations of Alkaline-Earth and Transition Metals on Functioning of the Rat Liver Mitochondria [in Ukrainian], Abstr. of Cand. Thesis, Biol. Sci., Kyiv (1999).

  29. T. Keleti, Basic Enzyme Kinetics [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  30. A. Rasola and P. Bernardi, “The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis,” Apoptosis, 12, No. 5, 815–833 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. O. McGuinness, N. Yafei, A. Costi, and M. Crompton, “The presence of two classes of high-affinity cyclosporine A binding sites in mitochondria. Evidence that the minor component is involved in the opening of an inner-membrane Ca2+-dependent pore,” Eur. J. Biochem., 194, No. 2, 671–679 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. D. V. de Macedo, C. da Costa, and L. Pereira-Da-Silva, “The permeability transition pore opening in intact mitochondria and submitochondrial particles,” Comp. Biochem. Physiol. Ser. B (Biochem. Mol. Biol.), 118, No. 1, 209–216 (1997).

    Article  Google Scholar 

  33. E. E. Jacobs, M. Jacob, D. R. Sanadi, and L. B. Bradley, “Uncoupling of oxidative phosphorylation by cadmium ion,” J. Biol. Chem., 223, 147–156 (1956).

    PubMed  CAS  Google Scholar 

  34. M. Crompton, “The mitochondrial permeability transition pore and its role in cell death,” Biochem. J., 34, 233–249 (1999).

    Article  Google Scholar 

  35. G. Kroemer and J. C. Reed, “Mitochondrial control of cell death,” Nat. Med., 6, 513–519 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. L. N. Shapoval, O. V. Dlytrenko, L. S. Pobegailo, et al., “Changes in the mitochondrial permeability in medullary cardiovascular neurons influence the hemodynamics in rats,” Neurophysiology, 39, No. 4/5, 343–346 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Fedirko.

Additional information

*Deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravens’ka, E.V., Nalyvaiko, N.V., Fedirko, N.V. et al. Kinetic Analysis of the Calcium- and Cadmium-Induced Development of Nonspecific Permeability of the Mitochondrial Inner Membrane. Neurophysiology 40, 252–260 (2008). https://doi.org/10.1007/s11062-009-9045-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-009-9045-8

Keywords

Navigation