Skip to main content
Log in

Background activity of neurons of the supraoptic hypothalamic nucleus in rats under conditions of vibrational stimulation and electromagnetic extrahigh-frequency irradiation

  • Published:
Neurophysiology Aims and scope

Abstract

We analyzed background impulse activity of neurons of the supraoptic nucleus of the rat hypothalamus in the course of 15-day-long isolated action of generalized vibrational stimulation and combination of such stimulation with irradiation of the animal’s head with low-intensity extrahigh-frequency (EHF, millimeter-range) electromagmetic waves. The distributions of the neurons by the level of regularity and dynamics of spike trains, separate frequency ranges of impulsation, and pattern of interspike interval (ISI) histograms were estimated. We also calculated the mean frequency of discharges and coefficient of variation of ISIs. A trend toward decreases in the deviations of some parameters of neuronal spike activity generated by supraoptic neurons, which were evident within early time intervals of isolated action of vibration (5 to 10 days), was observed under the influence of EHF electromagnetic irradiation; thus, the latter factor probably exerts a sedative effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Minasyan, Integrative Structures of the Brain: the Effect of Vibration [in Russian], Yerevan State Univ., Yerevan (1990).

    Google Scholar 

  2. M. Ariizumi and A. Okada, “Effect of whole body vibration on the rat brain content of serotonin and plasma corticosterone,” Eur. J. Appl. Physiol., 52, No. 1, 15–19 (1983).

    Article  CAS  Google Scholar 

  3. M. Ariizumi and A. Okada, “Effects of whole body vibration on biogenic amines in rat brain,” Br. J. Ind. Med., 42, No. 2, 133–136 (1985).

    PubMed  CAS  Google Scholar 

  4. A. Okada, M. Ariizumi, and G. Okamoto, “Changes in cerebral norepinephrine induced by vibration or noise stress,” Eur. J. Physiol. Occup. Physiol., 52, No. 1, 94–97 (1983).

    Article  CAS  Google Scholar 

  5. H. Nakamura, T. Moroji, S. Nohara, et al., “Activation of cerebral dopaminergic systems by noise and whole-body vibration,” Environ. Res., 57, No. 1, 10–18 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. N. N. Lebedeva and T. I. Kotrovskaya, “Experimental/clinical studies of biological effects of millimeter waves,” Millimetrovye Volny Biol. Med., 29, No. 1, 20–43 (2003).

    Google Scholar 

  7. M. A. Rojavin and M. C. Ziskin, “Medical application of millimeter waves,” Quart. J. Med., 91, No. 1, 57–66 (1998).

    CAS  Google Scholar 

  8. T. I. Usichenko, H. Edinger, V. V. Gizhko, et al., “Low-intensity electromagnetic millimeter waves for pain therapy,” eCAM, 3, No. 2, 201–207 (2006).

    Article  PubMed  Google Scholar 

  9. N. D. Devyatkov, M. B. Golant, and O. V. Betskii, Millimeter Waves and Their Role in Vital Processes [in Russian], Radio Svyaz, Moscow (1991).

    Google Scholar 

  10. E. N. Chuyan, N. A. Temur’yants, and N. V. Chirskii, “Functional activity of the sympathoadrenal system and behavioral indices in rats: changes induced by millimeter-range electromagnetic radiation,” Neurophysiology, 35, No. 2, 108–117 (2003).

    Article  Google Scholar 

  11. A. G. Pakhomov, Y. Akyel, O. N. Pakhomova, et al., “Current state and implication of research on biological effects of millimeter waves: a review of the literature,” Bioelectromagnetics, 19, No. 7, 393–413 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. O. G. Baklavadzhyan, “Central mechanisms of homeostasis,” in: Particular Physiology of the Nervous System [in Russian], Nauka, Leningrad (1983).

    Google Scholar 

  13. G. Paxinos and Ch. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1986).

    Google Scholar 

  14. S. M. Minasyan, G. Yu. Grigoryan, and S. G. Saakyan, et al., “Effects of extrahigh-frequency electromagmetic radiation on impulse activity of neurons of the supraoptic hypothalamic nucleus in rats,” Sechenov Ross. Physiol. Zh., 91, No. 2, 1398–1406 (2005).

    Google Scholar 

  15. A. S. Dmitriev, M. Yu. Taits, T. V. Dudina, and T. S. Kandybo, “Effect of general vertical vibration on interrelations between transmitters in different cerebral structures,” Dokl. Akad. Nauk Beloruskoi SSR, 31, No. 6, 567–571 (1987).

    Google Scholar 

  16. A. Okada, “Physiological response of the rat to different vibration frequencies,” Scand. J. Work Environ. Health, 12, No. 4, 362–364 (1986).

    PubMed  CAS  Google Scholar 

  17. A. S. Dmitriev, M. Yu. Taits, T. V. Dudina, et al., “Role of glucocorticoids in postvibrational shifts of inhibitory neurotransmission in brain structures,” Kosm. Biol. Aviakosm. Med., 24, No. 4, 32–33 (1990).

    PubMed  CAS  Google Scholar 

  18. S. Koyama, Y. Kanemitsu, and F. Weight, “Spontaneous activity and properties of two types of principial neurons from the ventral tegmental area of rat,” J. Neurophysiol., 93, No. 6, 3282–3293 (2005).

    Article  PubMed  Google Scholar 

  19. N. I. Kononenko and F. E. Dudek, “Mechanism of irregular firing of suprachiasmatic nucleus neurons in rat hypothalamic slices,” J. Neurophysiol., 91, No. 1, 267–273 (2004).

    Article  PubMed  Google Scholar 

  20. K. V. Sudakov and G. D. Antimonii, “Central mechanisms of the action of electromagnetic fields,” Usp. Fiziol. Nauk, 4, No. 2, 101–135 (1973).

    PubMed  CAS  Google Scholar 

  21. E. Salinas and T. J. Sejnowski, “Impact of correlated synaptic input on output firing rate and variability in simple neuronal models,” J. Neurosci., 20, No. 16, 6193–6209 (2000).

    PubMed  CAS  Google Scholar 

  22. A. N. Pokrovskii, “Averaged impulse activity in a model of neuronal network,” Biofizika, 38, No. 2, 327–331 (1993).

    PubMed  CAS  Google Scholar 

  23. A. N. Chuyan, M. M. Makhonina, and T. V. Zayachnikova, “Effect of the blockade of the system of opioid peptides on changes in emotional behavioral reactions of rats induced by the action of extrahigh-frequency electromagnetic radiation in the norm and under conditions of hypokinetic stress,” Neurophysiology, 38, No. 1, 45–52 (2006).

    Article  CAS  Google Scholar 

  24. K. I. Pogodayev, Epileptology and Pathochemistry of the Brain [in Russian], Meditsina, Moscow (1986).

    Google Scholar 

  25. M. A. Rojavin, A. Cowan, A. A. Radzievsky, and M. C. Ziskin, “Antipruritic effect of millimeter waves in mice: evidence for opioid involvement,” Life Sci., 63, No. 18, 251–257 (1998).

    Article  Google Scholar 

  26. N. N. Lebedeva, “Reactions of the central nervous system in humans to electromagnetic fields with different biotropic parameters,” Biomed. Radioelektron., No. 1, 24–36 (1998).

  27. Y. Fujiwara-Tsukamoto, Y. Isomura, A. Nambu, and M. Takada, “Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells,” Neuroscience, 119, No. 1, 265–275 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. A. V. Sem’yanov, “GABA-ergic inhibition in the CNS: types of GABA receptors and mechanisms of tonic GABA-mediated inhibitory action,” Neurophysiology, 34, No. 1, 71–80 (2002).

    Article  CAS  Google Scholar 

  29. A. Mokrushin and L. I. Pavlinova, “Involvement of endogenous neuropeptides in the regulation of synaptic plasticity,” Usp. Fiziol. Nauk, 32, No. 2, 16–28 (2001).

    PubMed  CAS  Google Scholar 

  30. A. A. Radzievsky, O. V. Gordiienko, I. Szabo, et al., “Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: involvement of endogenous opioids,” Bioelectromagnetics, 25, No. 6, 466–473 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Yu. B. Lishmanov, L. N. Maslov, and T. V. Lasukova, “Role of the opioid system in adaptation of the organism and protection of the heart in stress,” Usp. Fiziol. Nauk, 28, No. 1, 75–96 (1997).

    PubMed  CAS  Google Scholar 

  32. C. H. Brown, J. A. Russell, and G. Leng, “Opioid modulation of magnocellular neurosecretory cell activity,” Neurosci. Res., 36, No. 2, 97–120 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. A. H. Frey and L. S. Wesler, “Dopamine receptors and microwave energy exposure,” J. Bioelectricity, 2, Nos. 2/3, 145–157 (1983).

    CAS  Google Scholar 

  34. C. H. Brown and G. Leng, “In vivo modulation of post-spike excitability in vasopressin cells by k-opioid receptor activation,” J. Neuroendocrinol., 12, No. 8, 711–714 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. G. Dantas, I. L. Da Silva Torres, L. M. Crema, et al., “Repeated restraint stress reduces opioid receptor binding in different rat CNS structures,” Neurochem. Res., 30, No. 1, 1–7 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. R. J. Blanchard, C. R. McKittrick, and C. R. Blanchard, “Animal models of social stress: effects on behavior and brain neurochemical systems,” Physiol. Behav., 73, No. 3, 261–271 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. L. M. Cancela, M. Volosin, and V. A. Molina, “Chronic stress attenuation α2-adrenoceptor reactivity is reversed by naltrexone,” Pharmacol. Biochem. Behav., 31, No. 1, 33–35 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. L. M. Cancela, C. Bregonzio, and V. A. Molina, “Opioid involvement in the adaptative change of 5-HT1a receptors and induced by chronic restraint,” Eur. J. Pharmacol., 176, No. 3, 313–319 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Grigoryan.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 433–442, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoryan, G.Y., Minasyan, S.M. & Saakyan, S.G. Background activity of neurons of the supraoptic hypothalamic nucleus in rats under conditions of vibrational stimulation and electromagnetic extrahigh-frequency irradiation. Neurophysiology 39, 373–381 (2007). https://doi.org/10.1007/s11062-008-9008-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9008-5

Keywords

Navigation