, Volume 39, Issue 6, pp 373–381 | Cite as

Background activity of neurons of the supraoptic hypothalamic nucleus in rats under conditions of vibrational stimulation and electromagnetic extrahigh-frequency irradiation

  • G. Yu. Grigoryan
  • S. M. Minasyan
  • S. G. Saakyan


We analyzed background impulse activity of neurons of the supraoptic nucleus of the rat hypothalamus in the course of 15-day-long isolated action of generalized vibrational stimulation and combination of such stimulation with irradiation of the animal’s head with low-intensity extrahigh-frequency (EHF, millimeter-range) electromagmetic waves. The distributions of the neurons by the level of regularity and dynamics of spike trains, separate frequency ranges of impulsation, and pattern of interspike interval (ISI) histograms were estimated. We also calculated the mean frequency of discharges and coefficient of variation of ISIs. A trend toward decreases in the deviations of some parameters of neuronal spike activity generated by supraoptic neurons, which were evident within early time intervals of isolated action of vibration (5 to 10 days), was observed under the influence of EHF electromagnetic irradiation; thus, the latter factor probably exerts a sedative effect.


supraoptic nucleus of the hypothalamus background impulse activity vibration extrahigh-frequency electromagnetic radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Minasyan, Integrative Structures of the Brain: the Effect of Vibration [in Russian], Yerevan State Univ., Yerevan (1990).Google Scholar
  2. 2.
    M. Ariizumi and A. Okada, “Effect of whole body vibration on the rat brain content of serotonin and plasma corticosterone,” Eur. J. Appl. Physiol., 52, No. 1, 15–19 (1983).CrossRefGoogle Scholar
  3. 3.
    M. Ariizumi and A. Okada, “Effects of whole body vibration on biogenic amines in rat brain,” Br. J. Ind. Med., 42, No. 2, 133–136 (1985).PubMedGoogle Scholar
  4. 4.
    A. Okada, M. Ariizumi, and G. Okamoto, “Changes in cerebral norepinephrine induced by vibration or noise stress,” Eur. J. Physiol. Occup. Physiol., 52, No. 1, 94–97 (1983).CrossRefGoogle Scholar
  5. 5.
    H. Nakamura, T. Moroji, S. Nohara, et al., “Activation of cerebral dopaminergic systems by noise and whole-body vibration,” Environ. Res., 57, No. 1, 10–18 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    N. N. Lebedeva and T. I. Kotrovskaya, “Experimental/clinical studies of biological effects of millimeter waves,” Millimetrovye Volny Biol. Med., 29, No. 1, 20–43 (2003).Google Scholar
  7. 7.
    M. A. Rojavin and M. C. Ziskin, “Medical application of millimeter waves,” Quart. J. Med., 91, No. 1, 57–66 (1998).Google Scholar
  8. 8.
    T. I. Usichenko, H. Edinger, V. V. Gizhko, et al., “Low-intensity electromagnetic millimeter waves for pain therapy,” eCAM, 3, No. 2, 201–207 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    N. D. Devyatkov, M. B. Golant, and O. V. Betskii, Millimeter Waves and Their Role in Vital Processes [in Russian], Radio Svyaz, Moscow (1991).Google Scholar
  10. 10.
    E. N. Chuyan, N. A. Temur’yants, and N. V. Chirskii, “Functional activity of the sympathoadrenal system and behavioral indices in rats: changes induced by millimeter-range electromagnetic radiation,” Neurophysiology, 35, No. 2, 108–117 (2003).CrossRefGoogle Scholar
  11. 11.
    A. G. Pakhomov, Y. Akyel, O. N. Pakhomova, et al., “Current state and implication of research on biological effects of millimeter waves: a review of the literature,” Bioelectromagnetics, 19, No. 7, 393–413 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    O. G. Baklavadzhyan, “Central mechanisms of homeostasis,” in: Particular Physiology of the Nervous System [in Russian], Nauka, Leningrad (1983).Google Scholar
  13. 13.
    G. Paxinos and Ch. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1986).Google Scholar
  14. 14.
    S. M. Minasyan, G. Yu. Grigoryan, and S. G. Saakyan, et al., “Effects of extrahigh-frequency electromagmetic radiation on impulse activity of neurons of the supraoptic hypothalamic nucleus in rats,” Sechenov Ross. Physiol. Zh., 91, No. 2, 1398–1406 (2005).Google Scholar
  15. 15.
    A. S. Dmitriev, M. Yu. Taits, T. V. Dudina, and T. S. Kandybo, “Effect of general vertical vibration on interrelations between transmitters in different cerebral structures,” Dokl. Akad. Nauk Beloruskoi SSR, 31, No. 6, 567–571 (1987).Google Scholar
  16. 16.
    A. Okada, “Physiological response of the rat to different vibration frequencies,” Scand. J. Work Environ. Health, 12, No. 4, 362–364 (1986).PubMedGoogle Scholar
  17. 17.
    A. S. Dmitriev, M. Yu. Taits, T. V. Dudina, et al., “Role of glucocorticoids in postvibrational shifts of inhibitory neurotransmission in brain structures,” Kosm. Biol. Aviakosm. Med., 24, No. 4, 32–33 (1990).PubMedGoogle Scholar
  18. 18.
    S. Koyama, Y. Kanemitsu, and F. Weight, “Spontaneous activity and properties of two types of principial neurons from the ventral tegmental area of rat,” J. Neurophysiol., 93, No. 6, 3282–3293 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    N. I. Kononenko and F. E. Dudek, “Mechanism of irregular firing of suprachiasmatic nucleus neurons in rat hypothalamic slices,” J. Neurophysiol., 91, No. 1, 267–273 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    K. V. Sudakov and G. D. Antimonii, “Central mechanisms of the action of electromagnetic fields,” Usp. Fiziol. Nauk, 4, No. 2, 101–135 (1973).PubMedGoogle Scholar
  21. 21.
    E. Salinas and T. J. Sejnowski, “Impact of correlated synaptic input on output firing rate and variability in simple neuronal models,” J. Neurosci., 20, No. 16, 6193–6209 (2000).PubMedGoogle Scholar
  22. 22.
    A. N. Pokrovskii, “Averaged impulse activity in a model of neuronal network,” Biofizika, 38, No. 2, 327–331 (1993).PubMedGoogle Scholar
  23. 23.
    A. N. Chuyan, M. M. Makhonina, and T. V. Zayachnikova, “Effect of the blockade of the system of opioid peptides on changes in emotional behavioral reactions of rats induced by the action of extrahigh-frequency electromagnetic radiation in the norm and under conditions of hypokinetic stress,” Neurophysiology, 38, No. 1, 45–52 (2006).CrossRefGoogle Scholar
  24. 24.
    K. I. Pogodayev, Epileptology and Pathochemistry of the Brain [in Russian], Meditsina, Moscow (1986).Google Scholar
  25. 25.
    M. A. Rojavin, A. Cowan, A. A. Radzievsky, and M. C. Ziskin, “Antipruritic effect of millimeter waves in mice: evidence for opioid involvement,” Life Sci., 63, No. 18, 251–257 (1998).CrossRefGoogle Scholar
  26. 26.
    N. N. Lebedeva, “Reactions of the central nervous system in humans to electromagnetic fields with different biotropic parameters,” Biomed. Radioelektron., No. 1, 24–36 (1998).Google Scholar
  27. 27.
    Y. Fujiwara-Tsukamoto, Y. Isomura, A. Nambu, and M. Takada, “Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells,” Neuroscience, 119, No. 1, 265–275 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    A. V. Sem’yanov, “GABA-ergic inhibition in the CNS: types of GABA receptors and mechanisms of tonic GABA-mediated inhibitory action,” Neurophysiology, 34, No. 1, 71–80 (2002).CrossRefGoogle Scholar
  29. 29.
    A. Mokrushin and L. I. Pavlinova, “Involvement of endogenous neuropeptides in the regulation of synaptic plasticity,” Usp. Fiziol. Nauk, 32, No. 2, 16–28 (2001).PubMedGoogle Scholar
  30. 30.
    A. A. Radzievsky, O. V. Gordiienko, I. Szabo, et al., “Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: involvement of endogenous opioids,” Bioelectromagnetics, 25, No. 6, 466–473 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    Yu. B. Lishmanov, L. N. Maslov, and T. V. Lasukova, “Role of the opioid system in adaptation of the organism and protection of the heart in stress,” Usp. Fiziol. Nauk, 28, No. 1, 75–96 (1997).PubMedGoogle Scholar
  32. 32.
    C. H. Brown, J. A. Russell, and G. Leng, “Opioid modulation of magnocellular neurosecretory cell activity,” Neurosci. Res., 36, No. 2, 97–120 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    A. H. Frey and L. S. Wesler, “Dopamine receptors and microwave energy exposure,” J. Bioelectricity, 2, Nos. 2/3, 145–157 (1983).Google Scholar
  34. 34.
    C. H. Brown and G. Leng, “In vivo modulation of post-spike excitability in vasopressin cells by k-opioid receptor activation,” J. Neuroendocrinol., 12, No. 8, 711–714 (2000).PubMedCrossRefGoogle Scholar
  35. 35.
    G. Dantas, I. L. Da Silva Torres, L. M. Crema, et al., “Repeated restraint stress reduces opioid receptor binding in different rat CNS structures,” Neurochem. Res., 30, No. 1, 1–7 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    R. J. Blanchard, C. R. McKittrick, and C. R. Blanchard, “Animal models of social stress: effects on behavior and brain neurochemical systems,” Physiol. Behav., 73, No. 3, 261–271 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    L. M. Cancela, M. Volosin, and V. A. Molina, “Chronic stress attenuation α2-adrenoceptor reactivity is reversed by naltrexone,” Pharmacol. Biochem. Behav., 31, No. 1, 33–35 (1988).PubMedCrossRefGoogle Scholar
  38. 38.
    L. M. Cancela, C. Bregonzio, and V. A. Molina, “Opioid involvement in the adaptative change of 5-HT1a receptors and induced by chronic restraint,” Eur. J. Pharmacol., 176, No. 3, 313–319 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • G. Yu. Grigoryan
    • 1
  • S. M. Minasyan
    • 1
  • S. G. Saakyan
    • 1
  1. 1.Yerevan State UniversityYerevanRepublic of Armenia

Personalised recommendations