, Volume 39, Issue 4–5, pp 243–247 | Cite as

The Skok legacy and beyond: Molecular mechanisms of slow synaptic excitation in sympathetic ganglia

  • D. A. Brown


Vladimir Skok and his colleagues did much of the pioneering work on fast excitatory synaptic transmission in sympathetic ganglia and on nicotinic acetylcholine receptors that mediate fast transmission. I and my colleagues (including Alex Selyanko, one of Vladimir’s protégés) have studied the additional process of slow synaptic excitation that is mediated by the action of acetylcholine on muscarinic receptors. This results primarily from the closure of “M-channels,” a subset of voltage-gated potassium channels composed of Kv7.2 and Kv7.3 channel subunits. These channels require membrane phosphatidylinositol-4,5-bisphosphate (PIP2) for their opening, and their closure by muscarinic receptor activation is now thought to result from the reduction in PIP2 levels that follows receptor-induced PIP2 hydrolysis. The dynamics of these two forms of synaptic excitation are compared.


sympathetic ganglia fast and slow synaptic excitation muscarinic receptors potassium channels phosphatidylinositol-4,5-bisphosphate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Mirgorodsky and V. I. Skok, “Intracellular potentials recorded from a tonically active mammalian sympathetic ganglion,” Brain Res., 15, 570–572 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    V. I. Skok and A. Y. Ivanov, “What is the ongoing activity of sympathetic neurons?” J. Auton. Nerv. Syst., 7, 263–270 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    A. A. Selyanko, V. A. Derkach, and V. I. Skok, “Fast excitatory postsynaptic currents in voltage-clamped mammalian sympathetic ganglion neurons,” J. Auton. Nerv. Syst., 1, 127–137 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    V. A. Derkach, A. A. Selyanko, and V. I. Skok, “Acetylcholine-induced current fluctuations and fast excitatory post-synaptic currents in rabbit sympathetic neurons,” J. Physiol., 336, 511–526 (1983).PubMedGoogle Scholar
  5. 5.
    V. A. Derkach, R. A. North, A. A. Selyanko, and V. I. Skok, “Single channels activated by acetylcholine in rat superior cervical ganglion.” J. Physiol., 388, 141–151 (1987).PubMedGoogle Scholar
  6. 6.
    A. A. Selyanko, V. A. Derkach, and V. I. Skok, “Voltage-dependent actions of short-chain polymethylene bistrimethylammonium compounds on sympathetic ganglion neurons,” J. Auton. Nerv. Syst., 6, 13–21 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    V. I. Skok, A. A. Selyanko, and V. A. Derkach, “Channel-blocking activity is a possible mechanism for a selective ganglionic blockade,” Pflügers Arch., 398, 169–171 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    M. V. Skok, L. P. Voitenko, S. V. Voitenko, et al., “Alpha subunit composition of nicotinic acetylcholine receptors in the rat autonomic ganglia neurons as determined with subunit-specific anti-alpha(181-192) peptide antibodies,” Neuroscience, 93, 1427–1436 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    H. E. Purnyn, O. V. Rikhalsky, M. V. Skok, and V. I. Skok, “Functional nicotinic acetylcholine receptors in the neurons of rat intracardiac ganglia,” Fiziol. Zh., 50, No. 4, 79–84 (2004).PubMedGoogle Scholar
  10. 10.
    N. V. Marrion, T. G. Smart, S. J. Marsh, and D. A. Brown, “Muscarinic suppression of the M-current in the rat sympathetic ganglion is mediated by receptors of the M1-subtype,” Br. J. Pharmacol., 98, 557–573 (1989).PubMedGoogle Scholar
  11. 11.
    F. F. Weight and J. Votava, “Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance,” Science, 170, 755–758 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    D. A. Brown and P. R. Adams, “Muscarinic suppression of a novel voltage-sensitive K+-current in a vertebrate neuron,” Nature, 283, 673–676 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    H. S. Wang and D. McKinnon, “Potassium currents in rat prevertebral and paravertebral sympathetic neurons,” J. Physiol., 485, 319–337 (1995).PubMedGoogle Scholar
  14. 14.
    T. J. Jentsch, “Neuronal KCNQ potassium channels: physiology and role in disease,” Nat. Rev. Neurosci., 1, 21–30 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    H. S. Wang, Z. Pan, W. Shi, et al., “KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel,” Science, 282, 1890–1893 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    J. K. Hadley, G. M. Passmore, L. Tatulian, et al., “Stoichiometry of expressed KCNQ2/KCNQ3 channels and subunit composition of native ganglionic M-channels deduced from block by tetraethylammonium (TEA),” J. Neurosci., 23, 5012–5019 (2003).PubMedGoogle Scholar
  17. 17.
    A. A. Selyanko, J. K. Hadley, I. C. Wood, et al., “Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1_muscarinic acetylcholine receptors,” J. Physiol., 522, 349–355 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    A. A. Selyanko, C. E. Stansfeld, and D. A. Brown, “Closure of potassium M-channels by muscarinic acetylcholine-receptor stimulants requires a diffusible messenger,” Proc. Roy. Soc., London, Ser B. 250, 119–125 (1992).CrossRefGoogle Scholar
  19. 19.
    J. E. Haley, F. C. Abogadie, P. Delmas, et al., “The alpha subunit of Gq contributes to muscarinic inhibition of the M-type potassium current in sympathetic neurons,” J. Neurosci., 18, 4521–4531 (1998).PubMedGoogle Scholar
  20. 20.
    B. C. Suh and B. Hille, “Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate,” Curr. Opin. Neurobiol., 15, 370–378 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    B. C. Suh and B. Hille, “Regulation of KCNQ channels by manipulation of phosphoinositides,” J. Physiol., 528, 911–916 (2007).CrossRefGoogle Scholar
  22. 22.
    P. Delmas and D. A. Brown, “Pathways modulating neural KCNQ/M (Kv7) potassium channels,” Nat. Rev. Neurosci., 6, 850–62 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    D. A. Brown, S. A. Hughes, S. J. Marsh, and A. Tinker, “Regulation of M (Kv7.2/7.3) channels in neurons by PIP2 and products of PIP2_hydrolysis: significance for receptor-mediated inhibition,” J. Physiol., 582, 917–925 (2007).PubMedCrossRefGoogle Scholar
  24. 24.
    N. Gamper and M. S. Shapiro, “Target-specific PIP2 signalling: how might it work?” J. Physiol., 582, 967–975 (2007).PubMedCrossRefGoogle Scholar
  25. 25.
    J. S. Winks, S. Hughes, A. K. Filippov, et al., “Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels,” J. Neurosci., 25, 3400–3413 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Hughes, S. J. Marsh, A. Tinker, and D. A. Brown, “PIP(2)-dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct on-line assessment of PIP(2) depletion by Gq-coupled receptors in single living neurons,” Pflügers Arch. Apr. 20 (2007) [Epub ahead of print].Google Scholar
  27. 27.
    B. C. Suh, L. F. Horowitz, W. Hirdes, et al., “Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq,” J. Gen. Physiol., 123, 663–683 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    D. A. Brown and A. A. Selyanko, “Membrane currents underlying the slow excitatory post-synaptic potential in the rat sympathetic ganglion,” J. Physiol., 365, 335–364 (1985).Google Scholar
  29. 29.
    D. A. Brown, A. A. Selyanko, J. K. Hadley, and L. Tatulian, “Some pharmacological properties of neural KCNQ channels,” Neurophysiology, 34, Nos. 2/3, 91–94 (2002).CrossRefGoogle Scholar
  30. 30.
    D. A. Brown, N. J. Buckley, M. P. Caulfield, et al., “Coupling of muscarinic acetylcholine receptors to neural ion channels: closure of K+ channels,” in: Molecular Mechanisms of Muscarinic Acetylcholine Receptor Function, J. Wess (ed.), R. G. Landes Co., Austin, TX (1995), pp. 164–182.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.University College LondonGreat Britain

Personalised recommendations