Advertisement

Neurophysiology

, Volume 39, Issue 3, pp 171–177 | Cite as

Characteristics of paxilline-sensitive calcium-dependent potassium current in isolated intestine myocytes

  • V. V. Nesin
  • D. M. Kryshtal’
  • M. F. Shuba
Article
  • 39 Downloads

Abstract

An inward current in smooth muscle cells (SMCs) of the taenia coli is known to be transferred via potassium channels and nonselective cation channels. The outward current is of a potassium nature and includes several components, Ca-dependent potassium current (I K(Ca)) and delayed rectifying potassium current (I K(V)) in particular. Applications of 100 nM paxilline to SMCs of the guinea-pig taenia coli suppressed considerably the outward current and decreased its oscillations; the effect of paxilline reached its maximum in 2 to 3 min from the beginning of application. Analysis of the current-voltage (I-V) relationship observed under conditions of such applications showed that the paxilline-sensitive current is highly dependent on the intracellular Ca2+ concentration; a change in the I-V slope within a segment of the maximum activation of the calcium current is indicative of this peculiarity. Application of paxilline against the background of the action of 1 mM tetraethylammonium (a nonselective blocker of potassium channels) evoked no additional suppression of the outward current. In most cells, we observed spontaneous outward currents (SOCs). Application of 100 nM paxilline nearly completely blocked high-amplitude SOCs (>10 pA) formed due to activation of big-conductance Ca-dependent potassium channels. At the same time, the frequency of small-amplitude SOCs (<10 pA) practically did not change. Thus, according to the pharmacological and time characteristics, voltage dependence, and sensitivity to the intracellular Ca2+ concentration, we identified a voltage-operated paxilline-sensitive component in I K(Ca) that is transferred via big-conductance Ca-dependent potassium channels.

Keywords

smooth muscle cells taenia coli Ca-dependent potassium currents spontaneous outward currents paxilline tetraethylammonium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Skok and M. F. Shuba, Neuromuscular Physiology [in Russian], Vyshcha Shkola, Kyiv (1986).Google Scholar
  2. 2.
    E. I. Nikitina, N. G. Kochemasova, V. M. Taranenko, and M. F. Shuba, “On a mechanism of the relaxing effect of noradrenaline on smooth muscle cells of the coronary arteries,” Byull. Éksp. Biol. Med., 91, No. 5, 517–520 (1981).Google Scholar
  3. 3.
    J. C. Huang, M. L. Garcia, J. P. Reuben, and G. J. Kaczorowski, “Inhibition of β-adrenoceptor agonist relaxation of airway smooth muscle by Ca2+-activated K+ channel blockers,” Eur. J. Pharmacol., 235, No. 1, 37–43 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    M. T. Nelson, H. Cheng, M. Rubart, et al., “Relaxation of arterial smooth muscle by calcium sparks,” Science, 270, 633–637 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    S. P. Alexander and J. A. Peters, “TiPS receptor and ion channel nomenclature supplement,” Trends Pharmacol. Sci., 1–84 (1997).Google Scholar
  6. 6.
    C. S. Anderson, R. MacKinnon, C. Smith, and C. Miller, “Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage and ionic strength,” J. Gen. Physiol., 91, No. 3, 317–333 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    M. L. Garcia, H. G. Knaus, P. Munujos, et al., “Charibdotoxin and its effects on potassium channels,” Am. J. Physiol., 269, 1–10 (1995).Google Scholar
  8. 8.
    A. V. Povstyan, A. V. Zima, M. I. Harhun, and M. F. Shuba, “Properties of a charibdotoxin-sensitive component of Ca2+-dependent K+ current in smooth muscle cells of the guinea pig taenia coli,” Neurophysiology, 32, No. 1, 1–7 (2000).CrossRefGoogle Scholar
  9. 9.
    T. Capiod and D. C. Ogden, “The properties of calcium-activated potassium ion channels in guinea-pig isolated hepatocytes,” J. Physiol., 409, 285–295 (1989).PubMedGoogle Scholar
  10. 10.
    A. V. Povstyan, A. V. Zima, M. I. Harhun, and M. F. Shuba, “Properties of the apamin-sensitive component of Ca2+-dependent K+ current in smooth muscle cells of the guinea-pig taenia coli,” Neurophysiology, 32, No. 2, 63–69 (2000).CrossRefGoogle Scholar
  11. 11.
    A. Vacher, P. Vacher, and A. M. Mollard, “Tubocurarine blocks a calcium-dependent potassium current in rat tumoral pituitary cells,” J. Mol. Cell Endocrinol., 139, Nos. 1/2, 131–142 (1998).CrossRefGoogle Scholar
  12. 12.
    V. V. Nesin, D. A. Kryshtal’, and M. F. Shuba, “D-tubocurarine-sensitive component of calcium-dependent potassium current in guinea-pig taenia coli myocytes,” Neurophysiology, 37, No. 3, 239–244 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Kolb, “Potassium channels in excitable and non-excitable cells,” Rev. Physiol. Biochem. Pharmacol., 115, 52–91 (1990).Google Scholar
  14. 14.
    F. Vogalis, Y. Zhang, and R. K. Goyal, “An intermediate conductance K+ channel in the cell membrane of mouse intestinal smooth muscle,” Biochim. Biophys. Acta, 1371, No. 2, 309–316 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    A. V. Povstyan, A. V. Zima, V. L. Reznikov, et al., “Components of depolarization-induced transmembrane ion current in isolated smooth muscle cells of the guinea-pig taenia coli,” Neurophysiology, 29, Nos. 4/5, 269–277 (1997).CrossRefGoogle Scholar
  16. 16.
    A. Carl and K. M. Sanders, “Ca2+-activated K+ channels of canine colonic myocytes,” Am. J. Physiol., 257, 470–480 (1989).Google Scholar
  17. 17.
    H. M. Saunders and J. M. Farley, “Spontaneous transient outward currents and Ca2+-activated K+ channels in swine tracheal smooth muscle cells,” J. Pharmacol. Exp. Ther., 257, 1114–1120 (1991).PubMedGoogle Scholar
  18. 18.
    H. Knaus, O. B. McManus, S. H. Lee, et al., “Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels,” Biochemistry, 33, 5819–5828 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Sanchez and O. B. McManus, “Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel,” Neuropharmacology, 35, 963–968 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Yamamoto, S. L. Hu, and C. Y. Kao, “Outward current in single smooth muscle cells of the guinea pig taenia coli,” Gen. J. Physiol., 93, No. 3, 551–564 (1989).CrossRefGoogle Scholar
  21. 21.
    V. Zholos, L. V. Baidan, and M. F. Shuba, “Some properties of Ca2+-induced Ca2+ release mechanism in single visceral smooth muscle cell of guinea-pig,” J. Physiol., 457, 1–25 (1992).PubMedGoogle Scholar
  22. 22.
    A. V. Zima, A. V. Povstyan, and M. F. Shuba, “Calcium-dependent potassium channels of large conductance in the membrane of smooth muscle cells of the guinea-pig taenia coli,” VestnikKhar ’kov Univ., Ser. Biophys. Vestnik, 5, No. 466, 47–51 (1999).Google Scholar
  23. 23.
    A. L. Blatz and K. L. Magleby, “Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle,” J. Gen. Physiol., 84, No. 1, 1–23 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    C. D. Benham, T. B. Bolton, R. J. Lang, and T. Takewaki, “The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ channels in arterial and intestinal smooth muscle cell membranes,” Pflügers Arch., 403, No. 2, 120–127 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    C. D. Benham and T. B. Bolton, “Spontaneous transient outward current in single visceral and vascular smooth muscle cells of the rabbit,” J. Physiol., 381, 385–406 (1986).PubMedGoogle Scholar
  26. 26.
    V. Ya. Ganitkevich and M. F. Shuba, “Spontaneous outward currents in the membrane of a smooth muscle cell of the coronary artery,” Biol. Membrany, 5, No. 12, 1312–1320 (1988).Google Scholar
  27. 27.
    V. A. Buryi, D. V. Gordienko, and M. F. Shuba, “Characteristics of the potassium conductance of the membrane of isolated smooth muscle cells of the mesenteric artery,” Biol. Membrany, 9, No. 2, 595–601 (1992).Google Scholar
  28. 28.
    T. B. Bolton and D. V. Gordienko, “Confocal imaging of calcium release events in single smooth muscle cells,” Acta Physiol. Scand., 164, 567–575 (1998).PubMedCrossRefGoogle Scholar
  29. 29.
    D. V. Gordienko, T. B. Bolton, and M. B. Cannell, “Variability in spontaneous subcellular calcium release in guinea-pig ileum smooth muscle cells,” J. Physiol., 507, Part 3, 707–720 (1998).PubMedCrossRefGoogle Scholar
  30. 30.
    G. J. Perez, A. D. Bonev, J. B. Patlak, and M. T. Nelson, “Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries,” J. Gen. Physiol., 113, 229–238 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    I. D. Kong, S. D. Koh, and K. M. Sanders, “Purinergic activation of spontaneous transient outward current in guinea pig taenia coli myocytes,” Am. J. Physiol., 278, C352–C362 (2000).Google Scholar
  32. 32.
    V. Ya. Ganitkevich, M. F. Shuba, and S. V. Smirnov, “Inactivation of calcium channels in single vascular and visceral smooth muscle cells of the guinea pig,” Gen. Physiol. Biophys., 10, 137–161 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. V. Nesin
    • 1
  • D. M. Kryshtal’
    • 1
  • M. F. Shuba
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations