, Volume 39, Issue 2, pp 156–164 | Cite as

Hypokinetic stress-induced modifications of the pain sensitivity in rats



We examined the modifying effect of hypokinetic stress on the duration of behavioral phenomena in rats under conditions of experimentally induced tonic somatic, visceral, acute thermal, and electrostimulation-evoked pain. Stress of the above type (hypokinetic) was found to modify the pain sensitivity in rats related to all tested types of pain stresses of different etiology. Changes in the pain sensitivity of the animals under conditions of experimental pain tests depended on the duration of mobility restriction and could demonstrate opposite directions.


hypokinetic stress behavioral reactions tonic somatic pain visceral pain acute thermal pain electrostimulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Kalyuzhny, Physiological Mechanisms of the Control of Pain Sensitivity [in Russian], Meditsina, Moscow (1984).Google Scholar
  2. 2.
    E. O. Bragin, Neurochemical Mechanisms of the Control of Pain Sensitivity [in Russian], Publ. House of the Univ. of Friendship between Nations, Moscow (1991).Google Scholar
  3. 3.
    A. M. Vein and M. Ya. Avrutskii, Pain and Anesthesia [in Russian], Meditsina, Moscow (1997).Google Scholar
  4. 4.
    E. A. Kovalenko and N. N. Gurovskii, Hypokinesia [in Russian], Meditsina, Moscow (1980).Google Scholar
  5. 5.
    E. N. Chuyan and T. V. Zayachnikova, “Modifying effect of hypokinetic stress on changes in the activity of the sympathoadrenal system in rats after infection,” Uchen. Zap. Vernadskii Tavr. Nats. Univ., Ser. Biol. Khim., 18(57), No. 3, 198–205 (2005).Google Scholar
  6. 6.
    E. N. Chuyan, Neuroimmonoendocrine Mechanisms of Adaptation to the Action of Low-Intensity Extrahigh Frequency Electromagnetic Radiation [in Ukrainian], Abstr. of Doctoral Thesis, Biol. Sci., Kyiv (2004).Google Scholar
  7. 7.
    E. N. Chuyan, Effects of Millimeter Waves of Non-Thermal Intensity on the Development of Hypokinetic Stress in Rats with Different Individual Peculiarities [in Russian], Abstr. of Cand. Thesis, Biol. Sci., Simferopol’ (1992).Google Scholar
  8. 8.
    L. Santana Vega, Role of Individual Specificities of Motor Activity in the Development of Hypokinetic Stress in Rats [in Russian], Abstr. of Cand. Thesis, Biol. Sci., Simferopol’ (1991).Google Scholar
  9. 9.
    D. Dubuisson and S. G. Dennis, “The formalin test: a quantitative study of the analgesic effects of morphine, meperidine and brainstem stimulation in rats and cats,” Pain, 4, 161–164 (1997).CrossRefGoogle Scholar
  10. 10.
    R. Koster, M. Anderson, and E. J. De Beer, “Acetic acid for analgesic screening,” Fed. Proc., 18, 412–413 (1959).Google Scholar
  11. 11.
    Author’s Certificate No. 19243 of Ukraine, Computer Software for Recording, Processing, and Automated Data Analysis of the Duration and Frequency of Different Types of Behavioral Reactions in Animals [in Ukrainian], M. V. Lytsyuk and E. R. Dzheldubayeva, Published on January 18, 2007, Byul. No. 1.Google Scholar
  12. 12.
    J. O’Callaghan and S. G. Holtzman, “Quantification of the analgesic activity of narcotic antagonists by a modified hot-plate procedure,” Pharmacol. Exp. Ther., 194, 497–505 (1979).Google Scholar
  13. 13.
    A. A. Panin, O. V. Petrov, F. F. Kakurin, et al., “A study of the analgesic component of premedication using the technique of thermal sensometry,” Anesteziol. Reanimatol., No. 1, 18–20 (1983).Google Scholar
  14. 14.
    N. A. Osipova, Yu. B. Abramova, L. V. Rybakoba, et al., “Sensometry in the estimation of a premedication effect,” Anesteziol. Reanimatol., No. 1, 54–59 (1984).Google Scholar
  15. 15.
    A. M. Vasilenko, “Tensoalgometry,” Bol’ i Eye Lechenie, No. 6, 56–75 (1997).Google Scholar
  16. 16.
    D. A. Golombek, E. Escolar, L. J. Burin, et al., “Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonist,” Eur. J. Pharmacol., 194, No. 1, 25–30 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    Collection of Conventions of the Council of Europe: Ukrainian Version [in Russian], E. M. Vishnevskii (ed.), Parlament. Izd-vo, Kyiv (2000).Google Scholar
  18. 18.
    “Law of Ukraine ‘On the Protection of Animals from Inhumane Treatment’ No. 3447-IV from February 21, 2006” [in Ukraine], Vidomosti Verkhov. Rady Ukrainy, 27, 990 (2006).Google Scholar
  19. 19.
    A. Olivero, C. Castellano, and S. Puglisi-Allegra, “Anticonvulsant effects of stress: role of endogenous opioids,” Brain Res., 271, 193–195 (1983).CrossRefGoogle Scholar
  20. 20.
    A. D. Slonim, “Types and forms of adaptive behavior of animals,” in: Handbook of Physiology, Physiology of Behavior. Neurophysiological Regularities [in Russian], Nauka, Leningrad (1986), pp. 23–79.Google Scholar
  21. 21.
    A. V. Val’dman, M. M. Kozlovskaya, and O. S. Medvedev, Pharmacological Control of Emotional Stress [in Russian], Meditsina, Moscow (1979).Google Scholar
  22. 22.
    V. S. Semagin, A. V. Zukhar’, and M. A. Kulikov, A Type of Nervous System, the Resistance to Stress, and the Reproductive Function [in Russian], Nauka, Moscow (1988).Google Scholar
  23. 23.
    F. Z. Meyerson, Physiology of Adaptation Processes [in Russian], Nauka, Moscow (1986).Google Scholar
  24. 24.
    V. I. Malygina, The Sympathoadrenal System of Rats in Adaptation to Hypokinesia [in Russian], Abstr. of Cand. Thesis, Biol. Sci., Simferopol’ (1989).Google Scholar
  25. 25.
    F. Z. Meyerson, “Stress-limiting systems of the organism and their role in preventing ischemic damage to the heart,” Byul. Vsesoyuz. Kardiol. Nauch. Tsentra Akad. Med. Nauk SSSR, No. 1, 34–43 (1985).Google Scholar
  26. 26.
    M. G. Pshennikova, “A stress phenomenon. Emotional stress and its role on pathology,” Patol. Fiziol. Éksp. Ter., No. 2, 28–32 (2000).Google Scholar
  27. 27.
    V. M. Zhenilo, I. A. Aznauryan, and Yu. B. Abramov, “Modern concepts on the functioning of the nociceptive system of the organism,” Vestn. Intensiv. Ter., No. 2, 30–35 (2000).Google Scholar
  28. 28.
    M. G. Pshennikova, “Role of opioid peptides in the reaction of the organism to stress,” Patol. Fiziol. Éksp. Med., No. 3, 85–90 (1987).Google Scholar
  29. 29.
    E. Calogero, “Neurotransmitter regulation of the hypothalamic corticotropin-releasing hormone neuron,” Ann. New York Acad. Sci., 771, 31–40 (1995).CrossRefGoogle Scholar
  30. 30.
    M. J. Millan, “The neurobiology and control of anxious states,” Prog. Neurobiol., 70, 83–244 (2003).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Devoto, G. Flore, L. Pira, et al., “Co-release of noradrenaline and dopamine in the prefrontal cortex after acute morphine and during morphine withdrawal,” Psychopharmacology, 160, 220–224 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Culman, A. Kiss, and R. Kvetnansky, “Serotonin and tryptophan hydroxylase in isolated hypothalamic and brainstem nuclei of rats exposed to acute and repeated immobilization stress,” Exp. Din. Endocrinol, 83, 28–36 (1984).CrossRefGoogle Scholar
  33. 33.
    M. M. Manokhina, E. N. Chuyan, V. N. Berezhanskii, and V. V. Popov, “Changes in the content of serotonin in blood leukocytes under the action of low-intensity extrahigh-frequency electromagnetic radiation,” Uchen. Zap. Vernadskii Tavr. Nats. Univ., Ser. Biol. Khim., 19(58), No. 4, 151–160 (2005).Google Scholar
  34. 34.
    G. V. Fedoseeva, S. S. Zhikharev, V. A. Goncharova, et al., “Role of serotonin, histamine, and the kallikrein-kinin system in pathogenesis of suffocation attacks in bronchial asthma,” Terapevt. Arkh., No. 1, 47–53 (1992).Google Scholar
  35. 35.
    P. V. Simonov, Emotional Brain [in Russian], Nauka, Moscow (1981).Google Scholar
  36. 36.
    W. P. Pare, “Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats,” Physiol. Behav., 55, 433–439 (1994).PubMedCrossRefGoogle Scholar
  37. 37.
    V. V. Portugalov, E. I. Il’yina-Kakuyeva, V. V. Starostin et al., “Structural and cytochemical modifications of skeletal muscles related to limitation of mobility,” Arkh. Anat. Gistol. Embriol., 61, No. 11, 82–90 (1971).PubMedGoogle Scholar
  38. 38.
    A. V. Mikhailov, Functional Morphology of Neutrophils of the Blood in the Process of Adaptation to Hypokinesia [in Russian], Abstr. of Cand. Thesis, Biol. Sci., Simferopol’ (1985).Google Scholar
  39. 39.
    M. H. Joseph and G. A. Kennet, In vivo voltammetry in the rat hippocampus as an index of drug effects on extraneuronal 5-HT,” Neuropharmacology, 20, 1361–1364 (1981).PubMedGoogle Scholar
  40. 40.
    Yu. B. Lishmanov, L. N. Maslow, L. V. Maslova, and N. G. Krivonogov, “Opioid peptides in the dynamics of ‘physiological’ and ‘pathological’ stress,” Patol. Fiziol. É ksp. Ter., No. 4, 7–9 (1990).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Vernadskii Tavricheskii National UniversitySimferopolAutonomic Republic of Crimea Ukraine

Personalised recommendations