, Volume 37, Issue 1, pp 67–72 | Cite as

Disorders of Transmission via a Peripheral Nerve Related to Experimental Diabetic Peripheral Neuropathy in Rats: Possibilities for Pharmacological Correction

  • V. M. Demidov
  • A. M. Torbinskii
  • K. V. Lupanov
  • S. V. Moskalyova


We measured the conduction velocity (CV) of an excitation volley via the caudal nerve in intact rats and rats with streptozotocin-induced experimental diabetic polyneuropathy (ED PNP). We also tested the influence of four pharmacological agents (lipoic acid, NG-nitro-L-arginine, alprostan, and pentoxifylline) on the CV via the above nerve under conditions of ED PNP. We found that the development of ED PNP in rats was accompanied by a considerable drop in the CV (to 50–40% of that in the control). Introduction of the above pharmacological agents exerted noticeable normalizing effects on the parameter under study; these effects were observed from the second week of treatment and lasted up to the end of the tests. Considering the mechanisms governing the effects of the above drugs, we discuss the role of disturbances in the systems of endogenous nitric oxide and prostaglandins in the development of experimental diabetes and ED PNP.


experimental diabetic polyneuropathy streptozotocin conduction velocity nitric oxide alprostan pentoxifylline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Efimov and N. A. Skorbonskaya, Clinical Diabetology [in Russian], Zdorov’ya, Kyiv (1998).Google Scholar
  2. 2.
    I. A. Strokov, E. B. Manukhina, L. I. Bakhtina, et al., “Functioning of endogenous defensive systems in patients with insulin-dependent diabetes and polyneuropathy: the effect of antioxidant therapy,” Byull. Exp. Biol. Med., 130, No.10, 986–990 (2000).CrossRefGoogle Scholar
  3. 3.
    J. L. Evans and I. D. Goldfine, “Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes,” Diabetes Technol. Ther., 2, No.3, 401–413 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    A. Efimov, N. Zuyeva, and N. Skobinskaya, “Diagnostics, therapy, and prophylaxis of sucrose diabetes and angioneuropathies,” Liky, Nos. 7/8, 41–45 (2004).Google Scholar
  5. 5.
    G. J. Biessels, S. Smale, S. E. J. Duis, et al., “The effect of gamma-linolenic acid-alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats,” J. Neurol. Sci., 182, No.2, 99–106 (2001).CrossRefPubMedGoogle Scholar
  6. 6.
    E. Haak, K. H. Usadel, K. Kusterer, et al., “Effects of alpha-lipoic acid on microcirculation in patients with peripheral diabetic neuropathy,” Exp. Clin. Endocrinol. Diabetes, 108, No.3, 168–174 (2000).CrossRefPubMedGoogle Scholar
  7. 7.
    M. J. Stevens, I. Obrosova, X. Cao, et al., “Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy,” Diabetes, 49, No.6, 1006–1015 (2000).PubMedGoogle Scholar
  8. 8.
    S. Pampfer, “Disregulation of the cytokine network in the uterus of the diabetic rat,” Am. J. Reprod. Immunol., 45, No.6, 375–381 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    G. J. Prud’homme, B. R. Lawson, and A. N. Theofilopoulos, “Anticytokine gene therapy of autoimmune diseases,” Expert Opin. Biol. Ther., 1, No.3, 359–373 (2001).CrossRefPubMedGoogle Scholar
  10. 10.
    V. T. Ivashkin and O. M. Drapkina, “Nitric oxide in the regulation of the functional activity of physiological systems,” Ross. Zh. Gastroenterol., Gepatol., Koloproctol., 10, No.4, 16–21 (2000).Google Scholar
  11. 11.
    C. H. Cho, “Current roles of nitric oxide on gastrointestinal disorders,” J. physi ol., 95, 253–256 (2001).Google Scholar
  12. 12.
    S. S. Gross and M. S. Wolin, “Nitric oxide: Pathophysiological mechanisms,” Annu. Rev. Physiol., 57, 737–769 (1995)CrossRefPubMedGoogle Scholar
  13. 13.
    N. E. Garrett, M. Malcangio, M. Dewhurst, and D. R. Tomlinsonn, “α-Lipoic acid corrects neuropeptide deficits in disabetic rats via induction of trophic support,” Neurosci. Lett., 222, 191–194 (1997).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Stosic-Grujicic, D. Maksimovic, V. Badovinac, et al., “Antidiabetogenic effect of pentoxifylline is associated with systemic and target tissue modulation of cytokines and nitric oxide production,” J. Autoimmun., 16, No.1, 47–58 (2001).CrossRefPubMedGoogle Scholar
  15. 15.
    A. Jawerbaum, E. T. Gonzalez, D. Sinner, et al., “Diminished PGE2 content, enhanced PGE2 release and defects in 3H-PGE2 transport in embryos from overtly diabetic rats,” Reprod. Fertil. Dev., 12, Nos.3/4, 141–147 (2000).PubMedGoogle Scholar
  16. 16.
    R. Komers, J. N. Lindsley, T. T. Oyama, et al., “Immunohistochemical and functional correlations of renal cyclooxygenase-2 in experimental diabetes,” J. Clin. Invest., 107, No.7, 889–898 (2001).PubMedGoogle Scholar
  17. 17.
    A. I. Vinik, T. S. Park, K. B. Stansberry, and G. L. Pittenger, “Diabetic neuropathies,” Diabetologia, 43, No.8, 957–973 (2000).CrossRefPubMedGoogle Scholar
  18. 18.
    J. C. Arezzo, “The use of electrophysiology for the assessment of diabetic neuropathy,” Neurosci. Res. Commun., 21, 13–23 (1997).CrossRefGoogle Scholar
  19. 19.
    S. Yagihashi, “Pathology and pathogenetic mechanisms of diabetic neuropathy,” Diabetes Metab. Rev., 11, 193–225 (1995).PubMedGoogle Scholar
  20. 20.
    A. C. Kapelle, B. Bravenboer, T. van Buren, et al., “Amelioration by the Ca2+ antagonist, nimodipine of an existing neuropathy in the streptozotocin-induced diabetic rat,” Br. J. Pharmacol, 108, 780–785 (1993).PubMedGoogle Scholar
  21. 21.
    P. S. van Dam, B. Bravenboer, B. S. van Asbeck, et al., “High rat food vitamin E content improves nerve function in streptozotocin-diabetic rats,” Eur. J. Pharmacol., 376, 217–222 (1999).CrossRefPubMedGoogle Scholar
  22. 22.
    M. Sagara, J. Satoh, R. Wada, et al., “Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine,” Diabetologia, 39, 263–269 (1996).PubMedGoogle Scholar
  23. 23.
    E. P. Kostyuk, N. V. Bulgakova, and D. A. Vasilenko “Characteristics of conduction via afferent fibers in mice with streptozotocin-induced and genetically determined diabetes,” Neirofiziologiya/Neurophysiology, 28, Nos.4/5, 173–179 (1996).Google Scholar
  24. 24.
    N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev., 10, 189–224 (1994).PubMedGoogle Scholar
  25. 25.
    R. A. Malik, S. Tesfaye, A. Veves, et al., “The progression of microangiopathy with neuropathic severity,” in: Diabetic Neuropathy: New Concepts and Insights, N. Hotta, D. A. Green, J. D. Ward, et al. (eds.), Elsevier, Amsterdam (1995), pp. 131–135.Google Scholar
  26. 26.
    N. E. Cameron and M. A. Cotter, “Mechanisms underlying impaired nerve perfusion and endoneurial oxygenation in experimental diabetes,” in: Diabetic Neuropathy: New Concepts and Insights, N. Hotta, D. A. Green, J. D. Ward, et al. (eds.), Elsevier, Amsterdam (1995), pp. 3–15.Google Scholar
  27. 27.
    E. Bonnardel-Phu and E. Vicaut, “Role of oxidative stress in permeability changes observed in the microcirculation of diabetic rats in vivo,” J. Mal. Vasc., 25, No.2, 115–121 (2000).PubMedGoogle Scholar
  28. 28.
    M. M. Heath, K. C. Rixon, and J. J. Harding, “Glycation-induced inactivation of malate dehydrogenase protection by aspirin and a lens molecular chaperone, alpha-crystallin,” Biochim. Biophys. Acta, 1315, 176–184 (1996).PubMedGoogle Scholar
  29. 29.
    A. B. Bikhazi, G. M. Baasiri, N. Z. Boulos, and R. N. Khuri, “Transport of prostaglandins through normal and diabetic rat hepatocytes,” J. Pharm. Sci., 72, No.3, 296–299 (1983).PubMedGoogle Scholar
  30. 30.
    D. F. Horrobin, “Essential fatty acids in the management of impaired nerve function in diabetes,” Diabetes, 46,Suppl. 2, 90–93 (1997).Google Scholar
  31. 31.
    A. Montero, K. A. Munger, R. Z. Khan, et al., “F(2)-isoprostanes mediate high glucose-induced TGF-beta synthesis and glomerular proteinuria in experimental type I diabetes,” Kidney Int., 58, No.5, 1963–1972 (2000).CrossRefPubMedGoogle Scholar
  32. 32.
    E. Gonzalez, A. Jawerbaum, D. Sinner, et al., “Evolution of streptozotocin-pancreatic damage in the rat: modulatory effect of endothelins on the nitridergic and prostanoid pathway,” Nitric Oxide, 3, No.6, 459–466 (1999).CrossRefPubMedGoogle Scholar
  33. 33.
    M. J. Stevens, “Nitric oxide as a potential bridge between the metabolic and vascular hypothesis of diabetic neuropathy,” Diabet Med., 12, 292–295 (1995).PubMedGoogle Scholar
  34. 34.
    V. M. Demidov and K. V. Loupanov, “Antidiabetic effects of pentoxifylline in experimental sucrose diabetes,” Galitskii Likar. Visnyk, 9, No.3, 116–118 (2002).Google Scholar
  35. 35.
    V. O. Markov, K. V. Loupanov, N. M. Gotsulyak, and A. I. Bondarev, “NO-related pathogenetic mechanisms of streptozotocin-induced diabetes in rats,” Vestnik Neotlozn. Vosstanovitel. Meditsini, 3, No.3, 436–439 (2002).Google Scholar
  36. 36.
    H. Flint, M. A. Cotter, and N. E. Cameron, “Pentoxifylline effects on nerve conduct ion velocity and blood flow in diabetic rats,” Int. J. Exp. Diabetes Res., 1, No.1, 49–58 (2000).PubMedGoogle Scholar
  37. 37.
    S. S. Wagh, C. V. Natraj, and K. K. G. Menon, “Mode of action of lipoic acid in diabetes,” J. Biosci., 11, Nos.1/4, 59–74 (1987).Google Scholar
  38. 38.
    V. M. Demidov, K. V. Loupanov, and E. M. Rozumna, “Role of endogenous nitric oxide in pathogenesis of peripheral polyneuropathy in sucrose diabetes in rats,” Odesskii Med. Zh., No. 1, 30–33 (2003).Google Scholar
  39. 39.
    V. M. Demidov and S. V. Moskalyova, “Antidiabetic effects of alprostan in rats,” Odesskii Med. Zh., No. 3, 17–20 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. M. Demidov
    • 1
  • A. M. Torbinskii
    • 1
  • K. V. Lupanov
    • 1
  • S. V. Moskalyova
    • 1
  1. 1.Odessa State Medical University, Ministry of Public Health of UkraineUkraine

Personalised recommendations