, Volume 36, Issue 4, pp 254–261 | Cite as

Electrical activity of mauthner neurons of goldfish Fries in vitro

  • N.N. Karpouk
  • N.V. Oreshkin
  • I.B. Mikheeva
  • R.Sh. Shtanchaev
  • L.L. Pavlik
  • D.A. Moshkov


We studied the electrophysiological characteristics of Mauthner neurons (MN) in in vitro preparations of the medulla fragments of goldfish fries. The characteristics of extracellularly recorded responses of MN were found to be close to those usually recorded in vivo. It was demonstrated that in vitro intracellular microelectrode recording of MN activity in goldfish fries is, in principle, possible. The main experimental approaches for successful intracellular recording from such objects have been developed, and the possible artifacts met in the course of the experiments, as well as the parameters of stimulation, have been identified.


Mauthner neurons in vitro brain preparations intra-and extracellular recording resting potential action potential synaptic potentials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Nakajima, “Fine structure of the synaptic ending on the Mauthner cell of the goldfish,” J. Comp. Neurol., 156, No. 4, 375–402 (1974).Google Scholar
  2. 2.
    R. Tuttle, S. Masuko, and Y. Nakajima, “Freeze-fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: special reference to the quantitative analysis of gap junction,” J. Comp. Neurol., 246, No. 2, 202–211 (1986).Google Scholar
  3. 3.
    S. J. Zottoli and D. S. Faber, “Properties and distribution of anterior VIII nerve excitatory inputs to the goldfish Mauthner cell,” Brain Res., 174, No. 2, 319–323 (1979).Google Scholar
  4. 4.
    T. J. Furshpan and T. Furukawa, “Intracellular and extracellular responses of several regions of the Mauthner cell,” J. Neurophysiol., 25, 732–771 (1962).Google Scholar
  5. 5.
    J.-W. Lin and D. S. Faber, “Synaptic transmission mediated by single club endings on the goldfish Mauthner cell,” J. Neurosci., 8, No. 4, 1302–1312 (1988).Google Scholar
  6. 6.
    R. S. Eaton, W. A. Lavender, and C. M. Wieland, “Identification of Mauthner-initiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology,” J. Comp. Physiol., 144, 521–533 (1981).Google Scholar
  7. 7.
    J. G. Canfield and G. J. Rose, “Activation of Mauthner neurons during prey capture,” J. Comp. Physiol., 172, No. 7, 611–618 (1993).Google Scholar
  8. 8.
    J. G. Canfield, “Temporal constraints on visually directed C-start responses: behavioral and physiological correlates,” Brain, Behav., Evolut., 61, No. 3, 148–158 (2003).Google Scholar
  9. 9.
    X.-D. Yang and D. S. Faber, “Long-term potentiation of electrotonic coupling at mixed synapses,” Nature, 348, No. 6301, 542–545 (1990).Google Scholar
  10. 10.
    Pereda, A. Triller, H. Korn, and D. S. Faber, “Dopamine enhances both electrotonic coupling and chemical excitatory postsynaptic potentials at mixed synapses,” Proc. Natl. Acad. Sci. USA, 89, No. 24, 12088–12092 (1992).Google Scholar
  11. 11.
    E. Pereda, A. C. Nairn, L. R. Wolszon, and D. S. Faber, “Postsynaptic modulation of synaptic efficacy at mixed synapses on the Mauthner cell,” J. Neurosci., 14, No. 6, 3704–3712 (1994).Google Scholar
  12. 12.
    D. A. Moshkov, N. F. Mukhtasimova, L. L. Pavlik, et al., “In vitro long-term potentiation of electronic responses of goldfish Mauthner cells is accompanied by ultrastructural changes at afferent mixed synapses,” Neuroscience, 88, No. 3, 591–605 (1998).Google Scholar
  13. 13.
    L. L. Pavlik, N. R. Tiras, N. F. Moukhtasimova, et al., “Involvement of actin in electrotonic transmission in mixed synapses of goldfish Mauthner cells,” Morfologiya, 123, No. 1, 41–45 (2003).Google Scholar
  14. 14.
    T. J. Teyler, I. Cavus, and C. Coussens, “Synaptic plasticity in the hippocampal slice: functional consequence,” J. Neurosci. Meth., 59, 11–17 (1995).Google Scholar
  15. 15.
    V. M. Kozhanov and A. I. Shapovalov, “Synaptic effect of afferents of the vestibular nerve on reticular neurons of the isolated goldfish medulla,” Neirofiziologiya, 17, No. 1, 124–127 (1985).Google Scholar
  16. 16.
    Y. Oka, “Characterization of TTX-resistant persistent Na current underlying pacemaker potentials of fish gonadotropin-releasing hormone (GnRH) neurons,” Neirofiziologiya/Neurophysiology, 75, No. 6, 2397–2404 (1996).Google Scholar
  17. 17.
    W. M. King and J. T. Schmidt, “Nucleus isthmi in goldfish: in vitro recordings and fiber connections revealed by HRP injections,” Vis. Neurosci., 10, No. 3, 419–437 (1993).Google Scholar
  18. 18.
    P. Legendre and H. Korn, “Voltage dependence of conductance changes evoked by glycine release in the zebrafish brain,” J. Neurophysiol., 73, No. 6, 2404–2412 (1995).Google Scholar
  19. 19.
    L. L. Pavlik, N. R. Tiras, I. D. Pakhotina, et al., “Induction and long-lasting preservation of the potentiation of electrical responses of goldfish Mauthner neurons in fragments of the medulla incubated in vitro,” Tsitologiya, 39, No. 7, 541–545 (1997).Google Scholar
  20. 20.
    X.-D. Yang, H. Korn, and D. S. Faber, “Initial synaptic efficacy influences induction end expression of long-term changes in transmission,” Proc. Natl. Acad. Sci. USA, 88, No. 10, 4299–4303 (1991).Google Scholar
  21. 21.
    N. A. Otmakhov, Surviving Brain Slices: Methods and Recommendations [in Russian], Publishing House of the Institute of Biol. Physics, Pushchino (1987).Google Scholar
  22. 22.
    H. R. Tiras, I. B. Mikheeva, P. I. Pakhotin, and D. A. Moshkov, “Morphofunctional changes in adapted goldfish Mauthner neurons under conditions of long-lasting incubation of the medulla,” Morfologiya, 122, No. 6, 19–24 (2003).Google Scholar
  23. 23.
    L. L. Pavlik, N. R. Tiras, I. D. Pakhotina, and D. A. Moshkov, “Effect of cytochalasine D on the structure of mixed synapses and their electrotonic transmission,” Tsitologiya, 41, No. 7, 590–597 (1999).Google Scholar
  24. 24.
    E. Pereda and D. S. Faber, “Activity-dependent short-term enhancement of intracellular coupling,” J. Neurosci., 16, No. 3, 983–992 (1996).Google Scholar
  25. 25.
    M. Smith and A. E. Pereda, “Chemical synaptic activity modulates nearby electrical synapses,” Proc. Natl. Acad. Sci. USA, 100, No. 8, 4849–4854 (2003).Google Scholar
  26. 26.
    N. R. Tiras, S, N. Udal’tsov, I. B. Mikheeva, et al., “Morphofunctional changes in incubated goldfish Mauthner neurons induced by peptides from Scorpion venom,” Morfologiya, 123, No. 3, 40–45 (2003).Google Scholar
  27. 27.
    E. Candel, Cellular Basis of Behavior [Russian translation], Mir, Moscow (1980).Google Scholar
  28. 28.
    D. A. Moshkov, L. L. Pavlik, N. R. Tiras, et al., “Ultrastructural manifestations of changes in the efficacy of synaptic transmission through mixed synapses on Mauthner neurons related to natural modification of the motor function,” Neirofiziologiya/Neurophysiology, 35, No. 5, 394–401 (2003).Google Scholar
  29. 29.
    P. I. Pakhotin and I. D. Pakhotina, “Preparation of isolated perfused ground squirrel brain,” Brain Res. Bull., 33, No. 6, 719–721 (1994).Google Scholar
  30. 30.
    P. I. Pakhotin, L. L. Pavlik, I. D. Pakhotina, and A. A. Andreev, “Long-term morphofunctional survival of guinea pig hippocampal slices after brief treatment with cyclooxygenase inhibitors,” Neurosci. Behav. Physiol., 29, No. 5, 595–598 (1999).Google Scholar
  31. 31.
    J. Diamond,“The Mauthner cell,” Fish Physiology, W. S. Hoar and D. J. Randall (eds.), Academic Press, New York (1971), pp. 265–346.Google Scholar
  32. 32.
    G. Z. Mikhailova, V. D. Pavlik, and D. A. Moshkov, “Construction of the stereotaxic coordinates of localization of Mauthner neurons using 3D reconstruction of the brain of goldfish fries,” Proceedings of the Jubilee International Conference on Neurocybernetics “Problems of Neurocybernetics” [in Russian], Vol. 2, Rostov-on-Don (2002), p. 269.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • N.N. Karpouk
    • 1
  • N.V. Oreshkin
    • 2
  • I.B. Mikheeva
    • 2
  • R.Sh. Shtanchaev
    • 2
    • 3
  • L.L. Pavlik
    • 1
    • 3
  • D.A. Moshkov
    • 1
    • 3
  1. 1.Institute of Biophysics of the CellRussian Academy of SciencesPushchino, Moscow RegionRussia.
  2. 2.Institute for Theoretical and Experimental BiophysicsRussian Academy of SciencesMoscowRussia.
  3. 3.Puschino State UniversityRussia.

Personalised recommendations