Modern endoscopic skull base neurosurgery



Since the early use of the endoscopic view for treating simple intrasellar pituitary adenomas, the skull base surgery has experienced an unprecedented revolution elevating the treatment of skull base lesions to the next level in proficiency and excellence of care.


We have reviewed the preclinical and clinical evidence supporting the use of the endoscope in the treatment of skull base lesions. In this article, we aim to discuss and provide a wide view of the current indications and future perspectives of the endoscopic endonasal approaches (EEA) and of the endoscopic transcranial approaches.


As in the development of any other technique, EEA have gone through a transformation process from theoretical anatomic models to a pragmatic clinical use. Along the way, EEA have required several modifications, as well as pushbacks in the application of this technique in some indications. This process has resulted in the provision of an additional tool to the current surgical armamentarium that allows the skull base surgeon to face most challenging lesions along the skull base.


The judicious combination of transcranial and endoscopic-transnasal approaches warrants highest chances of achieving satisfactory tumors resection with a reduced risk of complications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Jho HD, Carrau RL, Ko Y, Daly MA (1997) Endoscopic pituitary surgery: an early experience. Surg Neurol 47:213–222; discussion 222–223.

  2. 2.

    Carrau RL, Jho HD, Ko Y (1996) Transnasal-transsphenoidal endoscopic surgery of the pituitary gland. Laryngoscope 106:914–918.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Cappabianca P, Alfieri A, de Divitiis E (1998) Endoscopic endonasal transsphenoidal approach to the sella: towards functional endoscopic pituitary surgery (FEPS). Minim Invasive Neurosurg 41:66–73.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Hadad G, Bassagasteguy L, Carrau RL et al (2006) A novel reconstructive technique after endoscopic expanded endonasal approaches: vascular pedicle nasoseptal flap. Laryngoscope 116:1882–1886.

    Article  PubMed  Google Scholar 

  5. 5.

    Zhang M, Singh H, Almodovar-Mercado GJ et al (2016) Required reading: the most impactful articles in endoscopic endonasal skull base surgery. World Neurosurg 92:499–512.e2.

    Article  PubMed  Google Scholar 

  6. 6.

    Albonette-Felicio T, Rangel GG, Martinéz-Pérez R et al (2020) Surgical management of anterior skull-base malignancies (endoscopic vs craniofacial resection). J Neurooncol.

    Article  PubMed  Google Scholar 

  7. 7.

    Tabaee A, Anand VK, Barrón Y et al (2009) Endoscopic pituitary surgery: a systematic review and meta-analysis. JNS 111:545–554.

    Article  Google Scholar 

  8. 8.

    Lonser RR, Wind JJ, Nieman LK et al (2013) Outcome of surgical treatment of 200 children with Cushing’s disease. J Clin Endocrinol Metab 98:892–901.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Rotenberg B, Tam S, Ryu WHA, Duggal N (2010) Microscopic versus endoscopic pituitary surgery: a systematic review. Laryngoscope 120:1292–1297.

    Article  PubMed  Google Scholar 

  10. 10.

    Gao Y, Zheng H, Xu S et al (2016) Endoscopic versus microscopic approach in pituitary surgery. J Craniofac Surg 27:e157–159.

    Article  PubMed  Google Scholar 

  11. 11.

    Razak AA, Horridge M, Connolly DJ et al (2013) Comparison of endoscopic and microscopic trans-sphenoidal pituitary surgery: early results in a single centre. Br J Neurosurg 27:40–43.

    Article  PubMed  Google Scholar 

  12. 12.

    Cappabianca P, Cavallo LM, Colao A, de Divitiis E (2002) Surgical complications associated with the endoscopic endonasal transsphenoidal approach for pituitary adenomas. J Neurosurg 97:293–298.

    Article  PubMed  Google Scholar 

  13. 13.

    Dehdashti AR, Ganna A, Karabatsou K, Gentili F (2008) Pure endoscopic endonasal approach for pituitary adenomas: early surgical results in 200 patients and comparison with previous microsurgical series. Neurosurgery 62:1006–1015; discussion 1015–1017.

  14. 14.

    Kassam AB, Prevedello DM, Carrau RL et al (2011) Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients. J Neurosurg 114:1544–1568.

    Article  PubMed  Google Scholar 

  15. 15.

    Ammirati M, Wei L, Ciric I (2013) Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 84:843–849.

    Article  PubMed  Google Scholar 

  16. 16.

    Wang EW, Zanation AM, Gardner PA et al (2019) ICAR: endoscopic skull-base surgery. Int Forum Allergy Rhinol 9:S145–S365.

    Article  PubMed  Google Scholar 

  17. 17.

    Koutourousiou M, Gardner PA, Fernandez-Miranda JC et al (2013) Endoscopic endonasal surgery for giant pituitary adenomas: advantages and limitations. J Neurosurg 118:621–631.

    Article  PubMed  Google Scholar 

  18. 18.

    Kato T, Sawamura Y, Abe H, Nagashima M (1998) Transsphenoidal-transtuberculum sellae approach for supradiaphragmatic tumours: technical note. Acta Neurochir (Wien) 140:715–718; discussion 719.

  19. 19.

    Ferrareze Nunes C, Lieber S, Truong HQ et al (2018) Endoscopic endonasal transoculomotor triangle approach for adenomas invading the parapeduncular space: surgical anatomy, technical nuances, and case series. J Neurosurg.

    Article  PubMed  Google Scholar 

  20. 20.

    Kasemsiri P, Carrau RL, Ditzel Filho LFS et al (2014) Advantages and limitations of endoscopic endonasal approaches to the skull base. World Neurosurg 82:S12–21.

    Article  PubMed  Google Scholar 

  21. 21.

    Mason RB, Nieman LK, Doppman JL, Oldfield EH (1997) Selective excision of adenomas originating in or extending into the pituitary stalk with preservation of pituitary function. J Neurosurg 87:343–351.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    de Paiva Neto MA, Vandergrift A, Fatemi N et al (2010) Endonasal transsphenoidal surgery and multimodality treatment for giant pituitary adenomas. Clin Endocrinol (Oxf) 72:512–519.

    Article  Google Scholar 

  23. 23.

    Di Maio S, Cavallo LM, Esposito F et al (2011) Extended endoscopic endonasal approach for selected pituitary adenomas: early experience. J Neurosurg 114:345–353.

    Article  PubMed  Google Scholar 

  24. 24.

    Goel A, Nadkarni T, Muzumdar D et al (2004) Giant pituitary tumors: a study based on surgical treatment of 118 cases. Surg Neurol 61:436–445; discussion 445–446.

  25. 25.

    Liu JK, Sevak IA, Carmel PW, Eloy JA (2016) Microscopic versus endoscopic approaches for craniopharyngiomas: choosing the optimal surgical corridor for maximizing extent of resection and complication avoidance using a personalized, tailored approach. FOC 41:E5.

    Article  Google Scholar 

  26. 26.

    Couldwell WT, Weiss MH, Rabb C et al (2004) Variations on the standard transsphenoidal approach to the sellar region, with emphasis on the extended approaches and parasellar approaches: surgical experience in 105 cases. Neurosurgery 55:539–547; discussion 547–550.

  27. 27.

    Frank G, Pasquini E, Mazzatenta D (2001) Extended transsphenoidal approach. J Neurosurg 95:917–918.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Kassam A, Snyderman CH, Mintz A et al (2005) Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus 19:3

    Google Scholar 

  29. 29.

    Cossu G, Jouanneau E, Cavallo LM et al (2020) Surgical management of craniopharyngiomas in adult patients: a systematic review and consensus statement on behalf of the EANS skull base section. Acta Neurochir 162:1159–1177.

    Article  PubMed  Google Scholar 

  30. 30.

    Elliott RE, Wisoff JH (2010) Surgical management of giant pediatric craniopharyngiomas. J Neurosurg Pediatr 6:403–416.

    Article  PubMed  Google Scholar 

  31. 31.

    Gardner PA, Kassam AB, Snyderman CH et al (2008) Outcomes following endoscopic, expanded endonasal resection of suprasellar craniopharyngiomas: a case series. J Neurosurg 109:6–16.

    Article  PubMed  Google Scholar 

  32. 32.

    Martinez-Perez R, Albonette-Felicio T, Hardesty DA et al (2020) The endoscopic supraorbital translaminar approach: a technical note. Acta Neurochir (Wien).

    Article  Google Scholar 

  33. 33.

    Bozkurt B, Yağmurlu K, Belykh E et al (2018) Quantitative anatomic analysis of the transcallosal-transchoroidal approach and the transcallosal-subchoroidal approach to the floor of the third ventricle: an anatomic study. World Neurosurg 118:219–229.

    Article  PubMed  Google Scholar 

  34. 34.

    Hardesty DA, Montaser AS, Beer-Furlan A et al (2018) Limits of endoscopic endonasal surgery for III ventricle craniopharyngiomas. J Neurosurg Sci 62:310–321.

    Article  PubMed  Google Scholar 

  35. 35.

    Brastianos PK, Shankar GM, Gill CM et al (2016) Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. JNCIJ.

    Article  Google Scholar 

  36. 36.

    Purohit A, Jha R, Khalafallah AM et al (2019) Endoscopic endonasal versus transcranial approach to resection of olfactory groove meningiomas: a systematic review. Neurosurg Rev.

    Article  PubMed  Google Scholar 

  37. 37.

    Di Maio S, Ramanathan D, Garcia-Lopez R et al (2012) Evolution and future of skull base surgery: the paradigm of skull base meningiomas. World Neurosurg 78:260–275.

    Article  PubMed  Google Scholar 

  38. 38.

    Kassam A, Snyderman CH, Mintz A et al (2005) Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus 19:E4

    Article  Google Scholar 

  39. 39.

    Liu JK, Silva NA, Sevak IA, Eloy JA (2018) Transbasal versus endoscopic endonasal versus combined approaches for olfactory groove meningiomas: importance of approach selection. Neurosurg Focus 44:E8.

    Article  PubMed  Google Scholar 

  40. 40.

    Kim YH, Jeon C, Se Y-B et al (2018) Clinical outcomes of an endoscopic transclival and transpetrosal approach for primary skull base malignancies involving the clivus. J Neurosurg 128:1454–1462.

    Article  PubMed  Google Scholar 

  41. 41.

    Ruggeri AG, Cappelletti M, Fazzolari B et al (2016) Frontobasal midline meningiomas: is it right to shed doubt on the transcranial approaches? Updates and review of the literature. World Neurosurg 88:374–382.

    Article  PubMed  Google Scholar 

  42. 42.

    Youssef AS, Sampath R, Freeman JL et al (2016) Unilateral endonasal transcribriform approach with septal transposition for olfactory groove meningioma: can olfaction be preserved? Acta Neurochir (Wien) 158:1965–1972.

    Article  Google Scholar 

  43. 43.

    Ung TH, Yang A, Aref M et al (2019) Correction to: preservation of olfaction in anterior midline skull base meningiomas: a comprehensive approach. Acta Neurochir (Wien) 161:737.

    Article  Google Scholar 

  44. 44.

    Martinez-Perez R, Albonette-Felicio T, Hardesty DA et al (2020) Same viewing angle, minimal craniotomy enlargement, extreme exposure increase: the extended supraorbital eyebrow approach. Neurosurg Rev.

    Article  PubMed  Google Scholar 

  45. 45.

    Todeschini AB, Beer-Furlan A, Otto B et al (2020) Endoscopic endonasal approaches for anterior skull base meningiomas. Adv Otorhinolaryngol 84:114–123.

    Article  PubMed  Google Scholar 

  46. 46.

    Beer-Furlan A, Abi-Hachem R, Jamshidi AO et al (2016) Endoscopic trans-sphenoidal surgery for petroclival and clival meningiomas. J Neurosurg Sci 60:495–502

    PubMed  Google Scholar 

  47. 47.

    Martínez-Pérez R, Silveira-Bertazzo G, Rangel GG et al (2019) The historical perspective in approaches to the spheno-petro-clival meningiomas. Neurosurg Rev.

    Article  PubMed  Google Scholar 

  48. 48.

    Couldwell WT, Fukushima T, Giannotta SL, Weiss MH (1996) Petroclival meningiomas: surgical experience in 109 cases. J Neurosurg 84:20–28.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Ditzel Filho LFS, Prevedello DM, Dolci RL et al (2015) The endoscopic endonasal approach for removal of petroclival chondrosarcomas. Neurosurg Clin N Am 26:453–462.

    Article  PubMed  Google Scholar 

  50. 50.

    Raza SM, Amine MA, Anand V, Schwartz TH (2015) Endoscopic endonasal resection of trigeminal schwannomas. Neurosurg Clin N Am 26:473–479.

    Article  PubMed  Google Scholar 

  51. 51.

    Martínez-Pérez R, Zachariah M, Li R et al (2020) Expanded endoscopic endonasal transpterygoid transmaxillary approach for a giant trigeminal schwannoma. Neurosurg Focus 2:V15.

    Article  Google Scholar 

  52. 52.

    Bossi Todeschini A, Montaser AS, Hardesty DA et al (2018) The limits of the endoscopic endonasal transclival approach for posterior fossa tumors. J Neurosurg Sci 62:322–331.

    Article  PubMed  Google Scholar 

  53. 53.

    Priddy BH, Nunes CF, Beer-Furlan A et al (2017) A side door to Meckel’s cave: anatomic feasibility study for the lateral transorbital approach. Operative Neurosurg 13:614–621.

    Article  Google Scholar 

  54. 54.

    Dolci RLL, Upadhyay S, Ditzel Filho LFS et al (2016) Endoscopic endonasal study of the cavernous sinus and quadrangular space: anatomic relationships: Study of the cavernous sinus and quadrangular space. Head Neck 38:E1680–E1687.

    Article  PubMed  Google Scholar 

  55. 55.

    Fernandez-Miranda JC, Gardner PA, Rastelli MM et al (2014) Endoscopic endonasal transcavernous posterior clinoidectomy with interdural pituitary transposition. JNS 121:91–99.

    Article  Google Scholar 

  56. 56.

    Kassam AB, Vescan AD, Carrau RL et al (2008) Expanded endonasal approach: vidian canal as a landmark to the petrous internal carotid artery. J Neurosurg 108:177–183.

    Article  PubMed  Google Scholar 

  57. 57.

    Sassun TE, Ruggeri AG, Delfini R (2016) True petroclival meningiomas: proposal of classification and role of the combined supra-infratentorial presigmoid retrolabyrinthine approach. World Neurosurg 96:111–123.

    Article  PubMed  Google Scholar 

  58. 58.

    Cohen-Cohen S, Gardner PA, Alves-Belo JT et al (2018) The medial wall of the cavernous sinus. Part 2: Selective medial wall resection in 50 pituitary adenoma patients. J Neurosurg 131:131–140.

    Article  PubMed  Google Scholar 

  59. 59.

    Zhang Q, Wang Z, Guo H et al (2019) Direct transcavernous sinus approach for endoscopic endonasal resection of intracavernous sinus tumors. World Neurosurg 128:e478–e487.

    Article  PubMed  Google Scholar 

  60. 60.

    Kassam AB, Gardner P, Snyderman C et al (2005) Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurg Focus 19:E6

    PubMed  Google Scholar 

  61. 61.

    Akutsu H, Kreutzer J, Fahlbusch R, Buchfelder M (2009) Transsphenoidal decompression of the sellar floor for cavernous sinus meningiomas: experience with 21 patients. Neurosurgery 65:54–62; discussion 62.

  62. 62.

    Freeman JL, Sampath R, Quattlebaum SC et al (2018) Expanding the endoscopic transpterygoid corridor to the petroclival region: anatomical study and volumetric comparative analysis. J Neurosurg 128:1855–1864.

    Article  PubMed  Google Scholar 

  63. 63.

    Jacquesson T, Simon E, Berhouma M, Jouanneau E (2015) Anatomic comparison of anterior petrosectomy versus the expanded endoscopic endonasal approach: interest in petroclival tumors surgery. Surg Radiol Anat 37:1199–1207.

    Article  PubMed  Google Scholar 

  64. 64.

    Revuelta Barbero JM, Montaser AS, Shahein M et al (2019) Endoscopic endonasal focal transclival-medial condylectomy approach for resection of a foramen magnum meningioma: 2-dimensional operative video. Operative Neurosurg 16:271–271.

    Article  Google Scholar 

  65. 65.

    Beer-Furlan A, Vellutini EA, Gomes MQT et al (2019) Approach selection and surgical planning in posterior cranial fossa meningiomas: how i do it. J Neurol Surg B 80:380–391.

    Article  Google Scholar 

  66. 66.

    Al-Rashed M, Foshay K, Abedalthagafi M (2019) Recent advances in meningioma immunogenetics. Front Oncol 9:1472.

    Article  PubMed  Google Scholar 

  67. 67.

    Patra DP, Hess RA, Turcotte EL et al (2020) Surgical outcomes with midline vs. lateral approaches for cranial base chordomas: a systematic review and meta-analysis. World Neurosurg.

    Article  PubMed  Google Scholar 

  68. 68.

    Jägersberg M, El Rahal A, Dammann P et al (2017) Clival chordoma: a single-centre outcome analysis. Acta Neurochir (Wien) 159:1815–1823.

    Article  Google Scholar 

  69. 69.

    Tsitouras V, Wang S, Dirks P et al (2016) Management and outcome of chordomas in the pediatric population: the Hospital for Sick Children experience and review of the literature. J Clin Neurosci 34:169–176.

    Article  PubMed  Google Scholar 

  70. 70.

    Wang L, Wu Z, Tian K et al (2017) Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg 127:1257–1267.

    Article  PubMed  Google Scholar 

  71. 71.

    Hofstetter CP, Singh A, Anand VK et al (2010) The endoscopic, endonasal, transmaxillary transpterygoid approach to the pterygopalatine fossa, infratemporal fossa, petrous apex, and the Meckel cave. J Neurosurg 113:967–974.

    Article  PubMed  Google Scholar 

  72. 72.

    Battaglia P, Turri-Zanoni M, Dallan I et al (2014) Endoscopic endonasal transpterygoid transmaxillary approach to the infratemporal and upper parapharyngeal tumors. Otolaryngol Head Neck Surg 150:696–702.

    Article  PubMed  Google Scholar 

  73. 73.

    Cannizzaro D, Tropeano MP, Milani D et al (2020) Microsurgical versus endoscopic trans-sphenoidal approaches for clivus chordoma: a pooled and meta-analysis. Neurosurg Rev.

    Article  PubMed  Google Scholar 

  74. 74.

    Fang CH, Friedman R, Schild SD et al (2015) Purely endoscopic endonasal surgery of the craniovertebral junction: a systematic review: Endonasal craniovertebral junction surgery. Int Forum Allergy Rhinol 5:754–760.

    Article  PubMed  Google Scholar 

  75. 75.

    O’Sullivan MD, Lyons F, Morris S et al (2018) Metastasis affecting craniocervical junction: current concepts and an update on surgical management. Global Spine J 8:866–871.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Liebelt BD, Haider AS, Steele WJ et al (2016) Spinal schwannoma and meningioma mimicking a single mass at the craniocervical junction subsequent to remote radiation therapy for acne vulgaris. World Neurosurg 93:484.e13–16.

    Article  Google Scholar 

  77. 77.

    Ponce-Gómez JA, Ortega-Porcayo LA, Soriano-Barón HE et al (2014) Evolution from microscopic transoral to endoscopic endonasal odontoidectomy. Neurosurg Focus 37:E15.

    Article  PubMed  Google Scholar 

  78. 78.

    Kassam AB, Snyderman C, Gardner P et al (2005) The expanded endonasal approach: a fully endoscopic transnasal approach and resection of the odontoid process: technical case report. Neurosurgery 57:E213; discussion E213.

  79. 79.

    Alfieri A, Jho H-D, Tschabitscher M (2002) Endoscopic endonasal approach to the ventral cranio-cervical junction: anatomical study. Acta Neurochir (Wien) 144:219–225; discussion 225.

  80. 80.

    La Corte E, Aldana PR, Ferroli P et al (2015) The rhinopalatine line as a reliable predictor of the inferior extent of endonasal odontoidectomies. FOC 38:E16.

    Article  Google Scholar 

  81. 81.

    Zenga F, Pacca P, Tardivo V et al (2016) Endoscopic endonasal approach to the odontoid pathologies. World Neurosurg 89:394–403.

    Article  PubMed  Google Scholar 

  82. 82.

    de Almeida JR, Zanation AM, Snyderman CH et al (2009) Defining the nasopalatine line: the limit for endonasal surgery of the spine. Laryngoscope 119:239–244.

    Article  PubMed  Google Scholar 

  83. 83.

    Aldana PR, Naseri I, La Corte E (2012) The naso-axial line: a new method of accurately predicting the inferior limit of the endoscopic endonasal approach to the craniovertebral junction. Neurosurgery 71:ons308–314; discussion ons314.

  84. 84.

    Zoli M, Rossi N, Friso F et al (2018) Limits of endoscopic endonasal approach for cranio-vertebral junction tumors. J Neurosurg Sci 62:356–368.

    Article  PubMed  Google Scholar 

  85. 85.

    Shriver MF, Kshettry VR, Sindwani R et al (2016) Transoral and transnasal odontoidectomy complications: a systematic review and meta-analysis. Clin Neurol Neurosurg 148:121–129.

    Article  PubMed  Google Scholar 

  86. 86.

    Carrau RL, Prevedello DM, de Lara D et al (2013) Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base: combined TORS and EEA for Resection of Extensive Malignancies of Skull Base. Head Neck 35:E351–E358.

    Article  PubMed  Google Scholar 

  87. 87.

    Banks CA, Palmer JN, Chiu AG et al (2009) Endoscopic closure of CSF rhinorrhea: 193 cases over 21 years. Otolaryngol Head Neck Surg 140:826–833.

    Article  PubMed  Google Scholar 

  88. 88.

    Bernal-Sprekelsen M, Bleda-Vázquez C, Carrau RL (2000) Ascending meningitis secondary to traumatic cerebrospinal fluid leaks. Am J Rhinol 14:257–259.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Mirza S, Thaper A, McClelland L, Jones NS (2005) Sinonasal cerebrospinal fluid leaks: management of 97 patients over 10 years. Laryngoscope 115:1774–1777.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Zuckerman J, Stankiewicz JA, Chow JM (2005) Long-term outcomes of endoscopic repair of cerebrospinal fluid leaks and meningoencephaloceles. Am J Rhinol 19:582–587

    Article  Google Scholar 

  91. 91.

    Hegazy HM, Carrau RL, Snyderman CH et al (2000) Transnasal endoscopic repair of cerebrospinal fluid rhinorrhea: a meta-analysis: transnasal endoscopic repair of cerebrospinal fluid rhinorrhea: a meta-analysis. Laryngoscope 110:1166–1172.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Yu-Wai-Man P, Griffiths PG (2013) Surgery for traumatic optic neuropathy. Cochrane Database Syst Rev.

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Ropposch T, Steger B, Meço C et al (2013) The effect of steroids in combination with optic nerve decompression surgery in traumatic optic neuropathy: steroids and optic nerve decompression in TON. Laryngoscope 123:1082–1086.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Martinez-Perez R, Albonette-Felicio T, Hardesty DA et al (2020) Outcome of the surgical decompression for traumatic optic neuropathy: a systematic review and meta-analysis. Neurosurg Rev.

    Article  PubMed  Google Scholar 

  95. 95.

    Horiguchi K, Murai H, Hasegawa Y et al (2010) Endoscopic endonasal trans-sphenoidal optic nerve decompression for traumatic optic neuropathy–technical note. Neurol Med Chir (Tokyo) 50:518–522.

    Article  Google Scholar 

  96. 96.

    Castelnuovo P, Turri-Zanoni M, Battaglia P et al (2015) Endoscopic endonasal management of orbital pathologies. Neurosurg Clin N Am 26:463–472.

    Article  PubMed  Google Scholar 

  97. 97.

    Poczos P, Kurbanov A, Keller JT, Zimmer LA (2015) Medial and superior orbital decompression: improving access for endonasal endoscopic frontal sinus surgery. Ann Otol Rhinol Laryngol 124:987–995.

    Article  PubMed  Google Scholar 

  98. 98.

    Kim M, Gudis DA, Tooley AA, Kazim M (2019) Trans-septal suture retraction for endoscopic orbital surgery. Orbit.

    Article  PubMed  Google Scholar 

  99. 99.

    Dhaliwal SS, Sowerby LJ, Rotenberg BW (2016) Timing of endoscopic surgical decompression in traumatic optic neuropathy: a systematic review of the literature. Int Forum Allergy Rhinol 6:661–667.

    Article  PubMed  Google Scholar 

  100. 100.

    Sanmillan JL, Lawton MT, Rincon-Torroella J et al (2016) Assessment of the endoscopic endonasal transclival approach for surgical clipping of anterior pontine anterior-inferior cerebellar artery aneurysms. World Neurosurg 89:368–375.

    Article  PubMed  Google Scholar 

  101. 101.

    Tayebi Meybodi A, Benet A, Vigo V et al (2019) Assessment of the endoscopic endonasal approach to the basilar apex region for aneurysm clipping. J Neurosurg 130:1937–1948.

    Article  Google Scholar 

  102. 102.

    Tayebi Meybodi A, Borba Moreira L, Little AS et al (2019) Anatomical assessment of the endoscopic endonasal approach for the treatment of paraclinoid aneurysms. J Neurosurg 131:1734–1742.

    Article  Google Scholar 

  103. 103.

    Kassam AB, Mintz AH, Gardner PA et al (2006) The expanded endonasal approach for an endoscopic transnasal clipping and aneurysmorrhaphy of a large vertebral artery aneurysm: technical case report. Operat Neurosurg 59:ONS-E162–ONSE165.

    Article  Google Scholar 

  104. 104.

    Kassam AB, Gardner PA, Mintz A et al (2007) Endoscopic endonasal clipping of an unsecured superior hypophyseal artery aneurysm. JNS 107:1047–1052.

    Article  Google Scholar 

  105. 105.

    Xiao L-M, Tang B, Xie S-H et al (2018) Endoscopic endonasal clipping of anterior circulation aneurysm: surgical techniques and results. World Neurosurg 115:e33–e44.

    Article  PubMed  Google Scholar 

  106. 106.

    Montaser AS, Prevedello DM, Gomez M et al (2020) Extended endoscopic endonasal clipping of intracranial aneurysms: an anatomic feasibility study. World Neurosurg 133:e356–e368.

    Article  PubMed  Google Scholar 

  107. 107.

    Gardner PA, Vaz-Guimaraes F, Jankowitz B et al (2015) Endoscopic endonasal clipping of intracranial aneurysms: surgical technique and results. World Neurosurg 84:1380–1393.

    Article  PubMed  Google Scholar 

  108. 108.

    Germanwala AV, Zanation AM (2011) Endoscopic endonasal approach for clipping of ruptured and unruptured paraclinoid cerebral aneurysms: case report. Operat Neurosurg 68:234–240.

    Article  Google Scholar 

  109. 109.

    Somanna S, Babu RA, Srinivas D et al (2015) Extended endoscopic endonasal transclival clipping of posterior circulation aneurysms: an alternative to the transcranial approach. Acta Neurochir 157:2077–2085.

    Article  PubMed  Google Scholar 

  110. 110.

    Martinez-Perez R, Hardesty DA, Silveira-Bertazzo G et al (2020) Safety and effectiveness of endoscopic endonasal intracranial aneurysm clipping: a systematic review. Neurosurg Rev.

    Article  PubMed  Google Scholar 

  111. 111.

    Martinez-Perez R, Mura JM (2019) The extradural minipterional approach: “Think Small, Play Wider”. World Neurosurg 125:534–535.

    Article  PubMed  Google Scholar 

  112. 112.

    Reisch R, Perneczky A (2005) Ten-year experience with the supraorbital subfrontal approach through an eyebrow skin incision. Neurosurgery 57:242–255; discussion 242–255.

  113. 113.

    Figueiredo EG, Deshmukh P, Nakaji P et al (2007) The minipterional craniotomy: technical description and anatomic assessment. Neurosurgery 61:256–264; discussion 264–265.

  114. 114.

    Martínez-Pérez R, Albonette-Felicio T, Hardesty DA, Prevedello DM (2020) Comparative anatomical analysis between the minipterional and supraorbital approaches. J Neurosurg.

    Article  PubMed  Google Scholar 

  115. 115.

    Yang A, Folzenlogen Z, Youssef AS (2018) Minimally invasive endoscopic-assisted approaches to the posterior fossa. J Neurosurg Sci 62:658–666.

    Article  PubMed  Google Scholar 

  116. 116.

    Wilson DA, Duong H, Teo C, Kelly DF (2014) The supraorbital endoscopic approach for tumors. World Neurosurg 82:S72–80.

    Article  PubMed  Google Scholar 

  117. 117.

    Garrett M, Consiglieri G, Nakaji P (2010) Transcranial minimally invasive neurosurgery for tumors. Neurosurg Clin N Am 21(595–605):v.

    Article  Google Scholar 

  118. 118.

    Lucas JW, Zada G (2016) Endoscopic endonasal and keyhole surgery for the management of skull base meningiomas. Neurosurg Clin N Am 27:207–214.

    Article  PubMed  Google Scholar 

  119. 119.

    Mori K (2014) Keyhole concept in cerebral aneurysm clipping and tumor removal by the supraciliary lateral supraorbital approach. Asian J Neurosurg 9:14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Roehm PC, Tint D, Chan N et al (2018) Endoscope-assisted repair of CSF otorrhea and temporal lobe encephaloceles via keyhole craniotomy. J Neurosurg 128:1880–1884.

    Article  PubMed  Google Scholar 

  121. 121.

    Beer-Furlan A, Evins AI, Rigante L et al (2015) The pterional port in dual-port endoscopy: a 2D and 3D cadaveric study. J Neurol Surg B 76:80–86.

    Article  Google Scholar 

  122. 122.

    Fischer G, Oertel J, Perneczky A (2012) Endoscopy in aneurysm surgery. Neurosurgery 70:184–190; discussion 190–191.

  123. 123.

    Iacoangeli M, Colasanti R, Esposito D et al (2017) Supraorbital subfrontal trans-laminar endoscope-assisted approach for tumors of the posterior third ventricle. Acta Neurochir (Wien) 159:645–654.

    Article  Google Scholar 

  124. 124.

    Gandhi S, Cavallo C, Zhao X et al (2018) Minimally invasive approaches to aneurysms of the anterior circulation: selection criteria and clinical outcomes. J Neurosurg Sci 62:636–649.

    Article  PubMed  Google Scholar 

  125. 125.

    Kunigelis K, Yang A, Youssef AS (2018) Endoscopic assisted retrosigmoid approach for cerebellopontine angle epidermoid tumor. J Neurol Surg B 79:S413–S414.

    Article  Google Scholar 

  126. 126.

    Das P, Borghei-Razavi H, Moore NZ, Recinos PF (2019) Posterior approach to Meckel’s cave: retrosigmoid craniectomy with endoscopic assistance. J Neurol Surg B 80:S331–S332.

    Article  Google Scholar 

  127. 127.

    Xiang H, Wu G, Ouyang J, Liu R (2018) Prospective study of neuroendoscopy versus microscopy: 213 cases of microvascular decompression for trigeminal neuralgia performed by one neurosurgeon. World Neurosurg 111:e335–e339.

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Daniel M. Prevedello.

Ethics declarations


Dr Daniel Prevedello is a consultant for Integra and Stryker. Equities: eLum, Soliton, Three rivers, ParaGen. Royalties: ACE Medical, KLS-Martin, Mizuho and Honorarium: Storz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinez-Perez, R., Requena, L.C., Carrau, R.L. et al. Modern endoscopic skull base neurosurgery. J Neurooncol 151, 461–475 (2021).

Download citation


  • Anterior fossa
  • Middle fossa
  • Posterior fossa
  • Minimally invasive
  • Key-hole
  • Tumor
  • Neurosurgery