Molecular genetic profiling reveals novel association between FLT3 mutation and survival in glioma

Abstract

Introduction

Recent molecular characterization of gliomas has uncovered somatic gene variation and DNA methylation changes that are associated with etiology, prognosis, and therapeutic response. Here we describe genomic profiling of gliomas assessed for associations between genetic mutations and patient outcomes, including overall survival (OS) and recurrence-free survival (RFS).

Methods

Mutations in a 50-gene cancer panel, 1p19q co-deletion, and MGMT promoter methylation (MGMT methylation) status were obtained from tumor tissue of 293 glioma patients. Multivariable regression models for overall survival (OS) and recurrence-free survival (RFS) were constructed for MGMT methylation, 1p19q co-deletion, and gene mutations controlling for age, treatment status, and WHO grade.

Results

Mutational profiles of gliomas significantly differed based on WHO Grade, such as high prevalence of BRAF V600E, IDH1, and PTEN mutations in WHO Grade I, II/III, and IV tumors, respectively. In multivariate regression analysis, MGMT methylation and IDH1 mutations were significantly associated with improved OS (HR = 0.44, p = 0.0004 and HR = 0.21, p = 0.007, respectively), while FLT3 and TP53 mutations were significantly associated with poorer OS (HR = 19.46, p < 0.0001 and HR = 1.67, p = 0.014, respectively). MGMT methylation and IDH1 mutations were the only significant alterations associated with improved RFS in the model (HR = 0.42, p < 0.0001 and HR = 0.37, p = 0.002, respectively). These factors were then included in a combined model, which significantly exceeded the predictive value of the base model alone (age, surgery, radiation, chemo, grade) (likelihood ratio test OS p = 1.64 × 10–8 and RFS p = 3.80 × 10–7).

Conclusions

This study highlights the genomic landscape of gliomas in a single-institution cohort and identifies a novel association between FLT3 mutation and OS in gliomas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Schwartzbaum JA, et al. (2006). Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol, 2(9): p. 494–503; quiz 1 p following 516

  2. 2.

    Louis DN et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    CAS  PubMed  Google Scholar 

  5. 5.

    Noushmehr H et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zhao J, Ma W, Zhao H (2014) Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro Oncol 16(1):103–112

    CAS  PubMed  Google Scholar 

  9. 9.

    Yan H et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    CAS  Google Scholar 

  11. 11.

    Eckel-Passow JE et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jiao Y et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3(7):709–722

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Jakola AS et al (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308(18):1881–1888

    CAS  PubMed  Google Scholar 

  14. 14.

    Aghi MK et al (2015) The role of surgery in the management of patients with diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 125(3):503–530

    PubMed  Google Scholar 

  15. 15.

    Noorbakhsh A et al (2014) Gross-total resection outcomes in an elderly population with glioblastoma: a SEER-based analysis. J Neurosurg 120(1):31–39

    PubMed  Google Scholar 

  16. 16.

    Keime-Guibert F et al (2007) Radiotherapy for glioblastoma in the elderly. N Engl J Med 356(15):1527–1535

    CAS  PubMed  Google Scholar 

  17. 17.

    Ryken TC et al (2015) The role of radiotherapy in the management of patients with diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 125(3):551–583

    CAS  PubMed  Google Scholar 

  18. 18.

    van den Bent MJ et al (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366(9490):985–990

    PubMed  Google Scholar 

  19. 19.

    van den Bent MJ et al (2017) Interim results from the CATNON trial (EORTC study 26053–22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 390(10103):1645–1653

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Perry JR et al (2017) Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 376(11):1027–1037

    CAS  PubMed  Google Scholar 

  21. 21.

    Tsongalis GJ et al (2014) Routine use of the Ion torrent ampliseq cancer hotspot panel for identification of clinically actionable somatic mutations. Clin Chem Lab Med 52(5):707–714

    CAS  PubMed  Google Scholar 

  22. 22.

    Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847–2849

    CAS  PubMed  Google Scholar 

  23. 23.

    Suzuki H et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47(5):458–468

    CAS  PubMed  Google Scholar 

  24. 24.

    Cancer Genome Atlas Research N, et al. (2015). Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas, N Engl J Med, 372(26): p. 2481–98

  25. 25.

    Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bell EH et al (2018) Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide: an analysis from the nrg oncology/RTOG 0424 trial. JAMA Oncol 4(10):1405–1409

    PubMed  Google Scholar 

  27. 27.

    Cairncross JG et al (2014) Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 32(8):783–790

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Buckner JC et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374(14):1344–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Molenaar RJ et al (2017) Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-mutated or IDH2-mutated solid tumours. BMJ Open 7(6):e014961

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Sulkowski PL et al. (2017). 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity, Sci Transl Med, 9(375)

  31. 31.

    Popovici-Muller J et al (2012) Discovery of the first potent inhibitors of mutant idh1 that lower tumor 2-HG in Vivo. ACS Med Chem Lett 3(10):850–855

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Clark KH et al (2013) 1p/19q testing has no significance in the workup of glioblastomas. Neuropathol Appl Neurobiol 39(6):706–717

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ceccarelli M et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25(3):304–317

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Canon J et al (2015) The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther 14(3):649–658

    CAS  PubMed  Google Scholar 

  36. 36.

    Bykov VJ et al (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8(3):282–288

    CAS  PubMed  Google Scholar 

  37. 37.

    Singh MM et al (2015) Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro Oncol 17(11):1463–1473

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kottaridis PD, Gale RE, Linch DC (2003) Flt3 mutations and leukaemia. Br J Haematol 122(4):523–538

    CAS  PubMed  Google Scholar 

  39. 39.

    Nagel G et al (2017) Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO). Ann Hematol 96(12):1993–2003

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Grafone T et al (2012) An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev 6(1):e8

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kiyoi H et al (1999) Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 93(9):3074–3080

    CAS  PubMed  Google Scholar 

  42. 42.

    Port M et al (2014) Prognostic significance of FLT3 internal tandem duplication, nucleophosmin 1, and CEBPA gene mutations for acute myeloid leukemia patients with normal karyotype and younger than 60 years: a systematic review and meta-analysis. Ann Hematol 93(8):1279–1286

    CAS  PubMed  Google Scholar 

  43. 43.

    Essbach C et al (2013) Abundance of Flt3 and its ligand in astrocytic tumors. Onco Targets Ther 6:555–561

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bleeker FE et al (2014) Mutational profiling of kinases in glioblastoma. BMC Cancer 14:718

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fiedler W et al (2015) A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations. Br J Haematol 169(5):694–700

    CAS  PubMed  Google Scholar 

  47. 47.

    Muppidi MR et al (2015) Decitabine and sorafenib therapy in FLT-3 ITD-mutant acute myeloid leukemia. Clin Lymphoma Myeloma Leuk 15(Suppl):S73–S79

    PubMed  Google Scholar 

  48. 48.

    Bastien JI, McNeill KA, Fine HA (2015) Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date. Cancer 121(4):502–516

    PubMed  Google Scholar 

  49. 49.

    Neyns B et al (2011) Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neurooncol 103(3):491–501

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kevin Shee or Gregory J. Tsongalis.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest regarding the material presented in this manuscript. All authors declare that they approve submission of the final article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shee, K., Chambers, M., Hughes, E.G. et al. Molecular genetic profiling reveals novel association between FLT3 mutation and survival in glioma. J Neurooncol (2020). https://doi.org/10.1007/s11060-020-03567-9

Download citation

Keywords

  • Glioma
  • Molecular profiles
  • Next generation sequencing
  • Targeted therapy