Journal of Neuro-Oncology

, Volume 139, Issue 2, pp 231–238 | Cite as

Older studies can underestimate prognosis of glioblastoma biomarker in meta-analyses: a meta-epidemiological study for study-level effect in the current literature

  • Victor M. Lu
  • Kevin Phan
  • Julia X. M. Yin
  • Kerrie L. McDonald
Topic Review



There are many potential biomarkers in glioblastoma (GBM), and meta-analyses represent the highest level of evidence when inferring their prognostic significance. It is possible however, that inherent design properties of the studies included in these meta-analyses may affect the pooled hazard ratio (HR) of the meta-analyses. This meta-epidemiological study aims to investigate the potential bias of three study-level properties in meta-analyses of GBM biomarkers currently published in the literature.


Seven electronic databases from inception to December 2017 were searched for meta-analyses evaluating different GBM biomarkers, which were screened against specific criteria. Study-level data were extracted from each meta-analysis, and analyzed using logistic regression to yield the ratio of HR (RHR) summary statistic.


Nine meta-analyses investigating different GBM biomarkers were included. Of all the meta-analyses, the HRs of two studies were significantly underestimated by older studies; they investigated biomarkers IDH1 (RHR = 1.145; p = 0.017) and CD133 (RHR = 0.850; p = 0.013). Study-level size and design showed non-significant trends towards affecting the overall HR in all included meta-analyses.


This meta-epidemiological study demonstrated that study-level year can already significantly affect the pooled HR of GBM biomarkers reported by meta-analyses. It is possible that in the future, more study-level properties will exert significant effect. In terms of future GBM biomarker meta-analyses, special consideration of bias should be given to these study-level properties as potential sources of effect on the prognostic pooled HR.


Glioblastoma Biomarker Prognostic Meta-epidemiology Meta-analysis 


Compliance with ethical standards

Conflict of interest

The authors report no funding sources or conflict of interest.

Supplementary material

11060_2018_2897_MOESM1_ESM.docx (254 kb)
Supplementary material 1 (DOCX 253 KB)


  1. 1.
    Sterne JA, Juni P, Schulz KF, Altman DG, Bartlett C, Egger M (2002) Statistical methods for assessing the influence of study characteristics on treatment effects in ‘meta-epidemiological’ research. Stat Med 21(11):1513–1524. CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang Z, Xu X, Ni H (2013) Small studies may overestimate the effect sizes in critical care meta-analyses: a meta-epidemiological study. Crit Care 17(1):R2. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Savovic J, Harris RJ, Wood L, Beynon R, Altman D, Als-Nielsen B, Balk EM, Deeks J, Gluud LL, Gluud C, Ioannidis JP, Juni P, Moher D, Pildal J, Schulz KF, Sterne JA (2010) Development of a combined database for meta-epidemiological research. Res Synth Methods 1(3–4):212–225. CrossRefPubMedGoogle Scholar
  4. 4.
    Murad MH, Wang Z (2017) Guidelines for reporting meta-epidemiological methodology research. Evid-Based Med 22(4):139–142. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Thuy MN, Kam JK, Lee GC, Tao PL, Ling DQ, Cheng M, Goh SK, Papachristos AJ, Shukla L, Wall KL, Smoll NR, Jones JJ, Gikenye N, Soh B, Moffat B, Johnson N, Drummond KJ (2015) A novel literature-based approach to identify genetic and molecular predictors of survival in glioblastoma multiforme: analysis of 14,678 patients using systematic review and meta-analytical tools. J Clin Neurosci 22(5):785–799CrossRefPubMedGoogle Scholar
  7. 7.
    Moher D, Liberati A, Tetzlaff J, Althman D (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang Z (2016) Meta-epidemiological study: a step by step approach by using R. J Evid-Based Med. CrossRefPubMedGoogle Scholar
  9. 9.
    Oxman AD, Guyatt GH, Singer J, Goldsmith CH, Hutchison BG, Milner RA, Streiner DL (1991) Agreement among reviewers of review articles. J Clin Epidemiol 44(1):91–98CrossRefPubMedGoogle Scholar
  10. 10.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controll Clin Trials 7(3):177–188CrossRefGoogle Scholar
  11. 11.
    Binabaj MM, Bahrami A, ShahidSales S, Joodi M, Joudi Mashhad M, Hassanian SM, Anvari K, Avan A (2018) The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol 233(1):378–386CrossRefPubMedGoogle Scholar
  12. 12.
    Chen JR, Xu HZ, Yao Y, Qin ZY (2015) Prognostic value of epidermal growth factor receptor amplification and EGFRvIII in glioblastoma: meta-analysis. Acta Neurol Scand 132(5):310–322CrossRefPubMedGoogle Scholar
  13. 13.
    Dai Y, Ning X, Han G, Li W (2016) Assessment of the association between isocitrate dehydrogenase 1 mutation and mortality risk of glioblastoma patients. Mol Neurobiol 53(3):1501–1508CrossRefPubMedGoogle Scholar
  14. 14.
    Huang T, Li S, Yang Z, Liu J, Han Y (2016) Loss of heterozygosity of 9p is associated with poorer survival in patients with gliomas. Mol Neurobiol 53(9):6407–6412. CrossRefPubMedGoogle Scholar
  15. 15.
    Levidou G, El-Habr E, Saetta AA, Bamias C, Katsougiannis K, Patsouris E, Korkolopoulou P (2010) P53 immunoexpression as a prognostic marker for human astrocytomas: a meta-analysis and review of the literature. J Neuro-Oncol 100(3):363–371. CrossRefGoogle Scholar
  16. 16.
    Qin G, Li X, Chen Z, Liao G, Su Y, Chen Y, Zhang W (2017) Prognostic value of YKL-40 in patients with glioblastoma: a systematic review and meta-analysis. Mol Neurobiol 54(5):3264–3270. CrossRefPubMedGoogle Scholar
  17. 17.
    Xue S, Song G, Yu J (2017) The prognostic significance of PD-L1 expression in patients with glioma: a meta-analysis. Sci Rep 7(1):4231. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yuan Y, Qi C, Maling G, Xiang W, Yanhui L, Ruofei L, Yunhe M, Jiewen L, Qing M (2016) TERT mutation in glioma: frequency, prognosis and risk. J Clin Neurosci 26:57–62CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang W, Chen H, Lv S, Yang H (2016) High CD133 expression is associated with worse prognosis in patients with glioblastoma. Mol Neurobiol 53(4):2354–2360CrossRefPubMedGoogle Scholar
  20. 20.
    Chen JR, Yao Y, Xu HZ, Qin ZY (2016) Isocitrate dehydrogenase (IDH)1/2 mutations as prognostic markers in patients with glioblastomas. Medicine 95(9):e2583CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Louis D, Ohgak H, Wiestler O, Cavenee W (2016) World Health Organization Histological Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer, LyonGoogle Scholar
  23. 23.
    Arita H, Narita Y, Yoshida A, Hashimoto N, Yoshimine T, Ichimura K (2015) IDH1/2 mutation detection in gliomas. Brain Tumor Pathol 32(2):79–89. CrossRefPubMedGoogle Scholar
  24. 24.
    Carmignani M, Volpe AR, Aldea M, Soritau O, Irimie A, Florian IS, Tomuleasa C, Baritchii A, Petrushev B, Crisan G, Valle G (2014) Glioblastoma stem cells: a new target for metformin and arsenic trioxide. J Biol Regul Homeost Agents 28(1):1–15PubMedGoogle Scholar
  25. 25.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol Cancer 5:67. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JPT (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Fan CH, Liu WL, Cao H, Wen C, Chen L, Jiang G (2013) O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis 4:e876. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhu H, Zhang Y, Chen J, Qiu J, Huang K, Wu M, Xia C (2017) IDH1 R132H mutation enhances cell migration by activating AKT-mTOR signaling pathway, but sensitizes cells to 5-FU treatment as NADPH and GSH are reduced. PLoS ONE 12(1):e0169038. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia

Personalised recommendations