Skip to main content

Advertisement

Log in

Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(Suppl 5):v1–v49

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wakimoto H, Johnson PR, Knipe DM, Chiocca EA (2003) Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther 10(11):983–990

    Article  PubMed  CAS  Google Scholar 

  3. Harding TC, Lalani AS, Roberts BN, Yendluri S, Luan B, Koprivnikar KE, Gonzalez-Edick M, Huan-Tu G, Musterer R, VanRoey MJ, Ozawa T, LeCouter RA, Deen D, Dickinson PJ, Jooss K (2006) AAV serotype 8-mediated gene delivery of a soluble VEGF receptor to the CNS for the treatment of glioblastoma. Mol Ther 13(5):956–966

    Article  PubMed  CAS  Google Scholar 

  4. Wollmann G, Tattersall P, van den Pol AN (2005) Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 79(10):6005–6022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Harding TC, Dickinson PJ, Roberts BN, Yendluri S, Gonzalez-Edick M, Lecouteur RA, Jooss KU (2006) Enhanced gene transfer efficiency in the murine striatum and an orthotopic glioblastoma tumor model, using AAV-7- and AAV-8-pseudotyped vectors. Hum Gene Ther 17(8):807–820

    Article  PubMed  CAS  Google Scholar 

  6. Hadaczek P, Mirek H, Berger MS, Bankiewicz K (2005) Limited efficacy of gene transfer in herpes simplex virus-thymidine kinase/ganciclovir gene therapy for brain tumors. J Neurosurg 102(2):328–335

    Article  PubMed  CAS  Google Scholar 

  7. Maguire CA, Meijer DH, LeRoy SG, Tierney LA, Broekman ML, Costa FF, Breakefield XO, Stemmer-Rachamimov A, Sena-Esteves M (2008) Preventing growth of brain tumors by creating a zone of resistance. Mol Ther 16(10):1695–1702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Meijer DH, Maguire CA, LeRoy SG, Sena-Esteves M (2009) Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-beta. Cancer Gene Ther 16(8):664–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Crommentuijn MH, Maguire CA, Niers JM, Vandertop WP, Badr CE, Wurdinger T, Tannous BA (2015) Intracranial AAV-sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model of invasive glioblastoma. Mol Oncol 10(4):625–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hicks MJ, Funato K, Wang L, Aronowitz E, Dyke JP, Ballon DJ, Havlicek DF, Frenk EZ, De BP, Chiuchiolo MJ, Sondhi D, Hackett NR, Kaminsky SM, Tabar V, Crystal RG (2015) Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma. Cancer Gene Ther 22(1):1–8

    Article  PubMed  CAS  Google Scholar 

  11. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65

    Article  PubMed  CAS  Google Scholar 

  12. Ahmed SS, Li H, Cao C, Sikoglu EM, Denninger AR, Su Q, Eaton S, Liso Navarro AA, Xie J, Szucs S, Zhang H, Moore C, Kirschner DA, Seyfried TN, Flotte TR, Matalon R, Gao G (2013) A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS Gene therapy in Canavan mice. Mol Ther 21(12): 2136–2147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM (2009) Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 199(3):381–390

    Article  PubMed  Google Scholar 

  14. Glass R, Synowitz M (2014) CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol 128(3):347–362

    Article  PubMed  CAS  Google Scholar 

  15. Okolie O, Bago JR, Schmid RS, Irvin DM, Bash RE, Miller CR, Hingtgen SD (2016) Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol 18(12):1622–1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Clavreul A, Etcheverry A, Tetaud C, Rousseau A, Avril T, Henry C, Mosser J, Menei P (2015) Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins. J Neurooncol 122(1):1–10

    Article  PubMed  CAS  Google Scholar 

  17. Cucchiarini M, Ren XL, Perides G, Terwilliger EF (2003) Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors. Gene Ther 10(8):657–667

    Article  PubMed  CAS  Google Scholar 

  18. Rosario AM, Cruz PE, Ceballos-Diaz C, Strickland MR, Siemienski Z, Pardo M, Schob KL, Li A, Aslanidi GV, Srivastava A, Golde TE, Chakrabarty P (2016) Microglia-specific targeting by novel capsid-modified AAV6 vectors. Mol Ther Methods Clin Dev 3:16026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gyorgy B, Maguire CA (2017) Extracellular vesicles: nature’s nanoparticles for improving gene transfer with adeno-associated virus vectors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(3):e1488

    Article  PubMed  CAS  Google Scholar 

  20. Gyorgy B, Fitzpatrick Z, Crommentuijn MH, Mu D, Maguire CA (2014) Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo. Biomaterials 35(26):7598–7609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hudry E, Martin C, Gandhi S, Gyorgy B, Scheffer DI, Mu D, Merkel SF, Mingozzi F, Fitzpatrick Z, Dimant H, Masek M, Ragan T, Tan S, Brisson AR, Ramirez SH, Hyman BT, Maguire CA (2016) Exosome-associated AAV vector as a robust and convenient neuroscience tool. Gene Ther 23(4):380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, Wang M, Hu B, Cheng SY, Sobol RW, Nakano I (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA 110(21):8644–8649

    Article  PubMed  Google Scholar 

  23. Badr CE, Niers JM, Morse D, Koelen JA, Vandertop P, Noske D, Wurdinger T, Zalloua PA, Tannous BA (2011) Suicidal gene therapy in an NF-kappaB-controlled tumor environment as monitored by a secreted blood reporter. Gene Ther 18(5):445–451

    Article  PubMed  CAS  Google Scholar 

  24. Badr CE, Niers JM, Tjon-Kon-Fat LA, Noske DP, Wurdinger T, Tannous BA (2009) Real-time monitoring of nuclear factor kappaB activity in cultured cells and in animal models. Mol Imaging 8(5):278–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lee Y, Messing A, Su M, Brenner M (2008) GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56(5):481–493

    Article  PubMed  Google Scholar 

  26. Maguire CA, Balaj L, Sivaraman S, Crommentuijn MH, Ericsson M, Mincheva-Nilsson L, Baranov V, Gianni D, Tannous BA, Sena-Esteves M, Breakefield XO, Skog J (2012) Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther 20(5):960–971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nagashima G, Suzuki R, Asai J, Fujimoto T (2002) Immunohistochemical analysis of reactive astrocytes around glioblastoma: an immunohistochemical study of postmortem glioblastoma cases. Clin Neurol Neurosurg 104(2):125–131

    Article  PubMed  Google Scholar 

  29. Lee J, Borboa AK, Baird A, Eliceiri BP (2011) Non-invasive quantification of brain tumor-induced astrogliosis. BMC Neurosci 12:9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dashkoff J, Lerner EP, Truong N, Klickstein JA, Fan Z, Mu D, Maguire CA, Hyman BT, Hudry E (2016) Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. Mol Ther Methods Clin Dev 3:16081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Meliani A, Fitzpatrick F, Marmier S, Leborgne C, Collaud F, Sola MS, Charles S, Ronzitti G, Vignaud A, van Wittenberghe L, Marolleau B, Jouen F, Tan S, Boyer O, Christophe O, Brisson AR, Maguire CA, Mingozzi F (2017) Enhanced liver gene transfer and evasion of pre-existing humoral immunity with exosome-enveloped AAV vectors. Blood Adv 1(23):2019–2031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gyorgy B, Sage C, Indzhykulian AA, Scheffer DI, Brisson AR, Tan S, Wu X, Volak A, Mu D, Tamvakologos PI, Li Y, Fitzpatrick Z, Ericsson M, Breakefield XO, Corey DP, Maguire CA (2017) Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol Ther 25(2):379–391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wassmer SJ, Carvalho LS, Gyorgy B, Vandenberghe LH, Maguire CA (2017) Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Sci Rep 7:45329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, Chan CM, McCrate M, Chicoine LG, Coley BD, Porensky PN, Kolb SJ, Mendell JR, Burghes AH, Kaspar BK (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19(11):1971–1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346

    Article  PubMed  CAS  Google Scholar 

  36. Biswas SK, Lewis CE (2010) NF-kappaB as a central regulator of macrophage function in tumors. J Leukoc Biol 88(5):877–884

    Article  PubMed  CAS  Google Scholar 

  37. Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora A (2007) The transcription factor nuclear factor-kappa B and cancer. Clin Oncol 19(2):154–161

    Article  CAS  Google Scholar 

  38. Wilhelmsson U, Eliasson C, Bjerkvig R, Pekny M (2003) Loss of GFAP expression in high-grade astrocytomas does not contribute to tumor development or progression. Oncogene 22(22):3407–3411

    Article  PubMed  CAS  Google Scholar 

  39. Tada H, Maron DJ, Choi EA, Barsoum J, Lei H, Xie Q, Liu W, Ellis L, Moscioni AD, Tazelaar J, Fawell S, Qin X, Propert KJ, Davis A, Fraker DL, Wilson JM, Spitz FR (2001) Systemic IFN-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. J Clin Invest 108(1):83–95

    PubMed  PubMed Central  CAS  Google Scholar 

  40. GuhaSarkar D, Neiswender J, Su Q, Gao G, Sena-Esteves M (2017) Intracranial AAV-IFN-beta gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model. Mol Oncol 11(2):180–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hottinger AF, Stupp R, Homicsko K (2014) Standards of care and novel approaches in the management of glioblastoma multiforme. Chin J Cancer 33(1):32–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shen D, Guo CC, Wang J, Qiu ZK, Sai K, Yang QY, Chen YS, Chen FR, Wang J, Panasci L, Chen ZP (2015) Interferon-alpha/beta enhances temozolomide activity against MGMT-positive glioma stem-like cells. Oncol Rep 34(5):2715–2721

    Article  PubMed  CAS  Google Scholar 

  43. Happold C, Roth P, Silginer M, Florea AM, Lamszus K, Frei K, Deenen R, Reifenberger G, Weller M (2014) Interferon-beta induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells. Mol Cancer Ther 13(4):948–961

    Article  PubMed  CAS  Google Scholar 

  44. Natsume A, Wakabayashi T, Ishii D, Maruta H, Fujii M, Shimato S, Ito M, Yoshida J (2008) A combination of IFN-beta and temozolomide in human glioma xenograft models: implication of p53-mediated MGMT downregulation. Cancer Chemother Pharmacol 61(4):653–659

    Article  PubMed  CAS  Google Scholar 

  45. Natsume A, Ishii D, Wakabayashi T, Tsuno T, Hatano H, Mizuno M, Yoshida J (2005) IFN-beta down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res 65(17):7573–7579

    Article  PubMed  CAS  Google Scholar 

  46. Park JH, Ryu CH, Kim MJ, Jeun SS (2015) Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow derived mesenchymal stem cells. J Korean Neurosurg Soc 57(5):323–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wakabayashi T, Kayama T, Nishikawa R, Takahashi H, Hashimoto N, Takahashi J, Aoki T, Sugiyama K, Ogura M, Natsume A, Yoshida J (2011) A multicenter phase I trial of combination therapy with interferon-beta and temozolomide for high-grade gliomas (INTEGRA study): the final report. J Neurooncol 104(2):573–577

    Article  PubMed  CAS  Google Scholar 

  48. Motomura K, Natsume A, Kishida Y, Higashi H, Kondo Y, Nakasu Y, Abe T, Namba H, Wakai K, Wakabayashi T (2011) Benefits of interferon-beta and temozolomide combination therapy for newly diagnosed primary glioblastoma with the unmethylated MGMT promoter: a multicenter study. Cancer 117(8):1721–1730

    Article  PubMed  CAS  Google Scholar 

  49. Brach MA, Hass R, Sherman ML, Gunji H, Weichselbaum R, Kufe D (1991) Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 88(2):691–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Veuger SJ, Hunter JE, Durkacz BW (2009) Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene 28(6):832–842

    Article  PubMed  CAS  Google Scholar 

  51. Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW (1991) Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes. J Clin Invest 87(5):1794–1797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Iwamoto KS, McBride WH (1994) Production of 13-hydroxyoctadecadienoic acid and tumor necrosis factor-alpha by murine peritoneal macrophages in response to irradiation. Radiat Res 139(1):103–108

    Article  PubMed  CAS  Google Scholar 

  53. Rath BH, Fair JM, Jamal M, Camphausen K, Tofilon PJ (2013) Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS ONE 8(1):e54752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the MGH Quantitative Real-Time PCR Core Facility for use of the quantitative PCR equipment for AAV quantitation and RT-qPCR analysis of transgene expression.

Funding

This work was supported by an American Brain Tumor Association Discovery Grant (CAM), a Cure Alzheimer’s Fund award (CAM) and the National Institutes of Health, the National Cancer Institute K22CA197053 (C.E.B.).

Author information

Authors and Affiliations

Authors

Contributions

CAM and CEB conceived of the study. AV, CAM, SGL, JSN, DJP, PSC, AM, ZF, EH, KP, SG, DM, DG, CEB performed experiments. CAM, CEB, SGL, AV, MSE, DG, ASR, BTH analyzed the results. CAM and CEB wrote the manuscript with input from all authors. All the authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Christian E. Badr or Casey A. Maguire.

Ethics declarations

Conflict of interest

CAM has submitted patent applications regarding the exo-AAV platform. CAM holds equity in and is a founder and scientific advisor of Chameleon Biosciences, Inc, a gene therapy company.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volak, A., LeRoy, S.G., Natasan, J.S. et al. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. J Neurooncol 139, 293–305 (2018). https://doi.org/10.1007/s11060-018-2889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2889-2

Keywords

Navigation