Journal of Neuro-Oncology

, Volume 139, Issue 1, pp 97–106 | Cite as

Glioblastoma (GBM) effects on quantitative MRI of contralateral normal appearing white matter

  • Hatef Mehrabian
  • Wilfred W. Lam
  • Sten Myrehaug
  • Arjun Sahgal
  • Greg J. Stanisz
Clinical Study



The objective was to investigate (with quantitative MRI) whether the normal appearing white matter (NAWM) of glioblastoma (GBM) patients on the contralateral side (cNAWM) was different from NAWM of healthy controls.


Thirteen patients with newly diagnosed GBM and nine healthy age-matched controls were MRI-scanned with quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), and transverse relaxation time (T2)-mapping. MRI scans were performed after surgery and before chemo-radiation treatment. Comprehensive qMT, CEST, T2 data were acquired. A two-pool MT model was fit to qMT data in transient state, to calculate MT model parameters \([{\text{R}},\,{{\text{T}}_{2{\text{b}}}},{\text{ R}}{{\text{M}}_{0{\text{b}}}}/{{\text{R}}_{\text{a}}},\,1/{{\text{R}}_{\text{a}}}{{\text{T}}_{2{\text{a}}}}]\). CEST signal was isolated by removing the contributions from the MT and direct water saturation, and CEST signal was calculated for Amide (CESTAmide), Amine (CESTAmine) and nuclear overhauser effect, NOE (CESTNOE).


There was no difference between GBM patients and normal controls in the qMT properties of the macromolecular pool \(({\text{R}},\,{{\text{T}}_{2{\text{b}}}},{\text{ R}}{{\text{M}}_{0{\text{b}}}}/{{\text{R}}_{\text{a}}})\). However, their free water pool spectrum was different (1/RaT2a,patient = 28.1 ± 3.9, 1/RaT2a,control = 25.0 ± 1.1, p = 0.03). This difference could be attributed to the difference in their T2 time (\(T_{{2,\;{\text{patient}}}}^{{{\text{obs}}}}\) = 83 ± 4, \({T}_{{2,\;{\text{control}}}}^{{{\text{obs}}}}\) = 88 ± 1, p = 0.004). CEST signals were statistically significantly different with the CESTAmide having the largest difference between the two cohorts (CESTAmide,patient = 2.8 ± 0.4, CESTAmide,control = 3.4 ± 0.5, p = 0.009).


CEST in cNAWM of GBM patients was lower than healthy controls which could be caused by modified brain metabolism due to tumor cell infiltration. There was no difference in MT properties of the patients and controls, however, the differences in free water pool properties were mainly due to reduced T2 in cNAWM of the patients (resulting from structural changes and increased cellularity).


Quantitative magnetization transfer (qMT) Chemical exchange saturation transfer (CEST) Glioblastoma (GBM) Normal appearing white matter (NAWM) 



This study was funded by Terry Fox Research Institute (TFRI project 1034), Canadian Cancer Society Research Institute (CCSRI 701640) and Brain Canada Grant (CCSRI 705083).

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflicts of interest.


  1. 1.
    Ryken TC, Aygun N, Morris J, Schweizer M, Nair R, Spracklen C, Kalkanis SN, Olson JJ (2014) The role of imaging in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 118:435–460. CrossRefPubMedGoogle Scholar
  2. 2.
    Easaw JC, Mason WP, Perry J, Laperrière N, Eisenstat DD, Del Maestro R, Bélanger K, Fulton D, Macdonald D (2011) Canadian recommendations for the treatment of recurrent or progressive glioblastoma multiforme. Curr Oncol 18(3).
  3. 3.
    Olson JJ, Ryken T (2008) Guidelines for the treatment of newly diagnosed glioblastoma: introduction. J Neurooncol 89:255–258. CrossRefPubMedGoogle Scholar
  4. 4.
    Olson JJ, Fadul CE, Brat DJ, Mukundan S, Ryken TC (2009) Management of newly diagnosed glioblastoma: guidelines development, value and application. J Neuro-oncol 93:1–23. CrossRefGoogle Scholar
  5. 5.
    Darefsky AS, King JTJ, Dubrow R (2012) Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of Surveillance, Epidemiology, and End Results registries. Cancer 118:2163–2172. CrossRefPubMedGoogle Scholar
  6. 6.
    Koshy M, Villano JL, Dolecek TA, Howard A, Mahmood U, Chmura SJ, Weichselbaum RR, McCarthy BJ (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neuro-oncol 107:207–212. CrossRefGoogle Scholar
  7. 7.
    Cuddapah VA, Robel S, Watkins S, Sontheimer H (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15:455–465. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. J Am Med Assoc 90:823–825. CrossRefGoogle Scholar
  9. 9.
    Sahm F, Capper D, Jeibmann A (2012) al et. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol 69:523–526CrossRefPubMedGoogle Scholar
  10. 10.
    Scherer HJ (1938) Structural development in gliomas. Am J Cancer 34:333–351. Google Scholar
  11. 11.
    Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636. CrossRefPubMedGoogle Scholar
  12. 12.
    Giese A, Kluwe L, Laube B, Meissner H, Berens ME, Westphal M (1996) Migration of human glioma cells on myelin. Neurosurgery 38:755–764CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134CrossRefPubMedGoogle Scholar
  14. 14.
    Zaiss M, Windschuh J, Paech D et al (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112:180–188. CrossRefPubMedGoogle Scholar
  15. 15.
    Sagiyama K, Mashimo T, Togao O et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci USA 111:4542–4547. CrossRefPubMedGoogle Scholar
  16. 16.
    Ma B, Blakeley JO, Hong X et al (2016) Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 44:456–462. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mcvicar N, Li AX, Meakin SO, Bartha R (2015) Imaging chemical exchange saturation transfer (CEST) effects following tumor-selective acidification using lonidamine. NMR Biomed 28:566–575. CrossRefPubMedGoogle Scholar
  18. 18.
    Heo HY, Zhang Y, Jiang S, Lee DH, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 4.7 tesla. Magn Reson Med 75:1630–1639. CrossRefPubMedGoogle Scholar
  19. 19.
    Levesque IR, Giacomini PS, Narayanan S, Ribeiro LT, Sled JG, Arnold DL, Pike GB (2010) Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn Reson Med 63:633–640. CrossRefPubMedGoogle Scholar
  20. 20.
    Horsfield MA (2005) Magnetization transfer imaging in multiple sclerosis. J Neuroimaging 15:58S–67S. CrossRefPubMedGoogle Scholar
  21. 21.
    Tozer DJ, Rees JH, Benton CE, Waldman AD, Jäger HR, Tofts PS (2011) Quantitative magnetisation transfer imaging in glioma: preliminary results. NMR Biomed 24:492–498. CrossRefPubMedGoogle Scholar
  22. 22.
    Newbould RD, Nicholas R, Thomas CL et al (2014) Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. NeuroImage 4:641–648. CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou J, Lal B, Wilson DA, Laterra J, Van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMedGoogle Scholar
  24. 24.
    Chavez S, Stanisz GJ (2012) A novel method for simultaneous 3D B1 and T1 mapping: the method of slopes (MoS). NMR Biomed 25:1043–1055CrossRefPubMedGoogle Scholar
  25. 25.
    Chavez S (2012) Optimized method of slopes (MoS) produces robust and efficient 3D B1-corrected T1 maps. In: Proceedings of the international society for magnetic resonance in medicine, p. 2389Google Scholar
  26. 26.
    Chavez S (2015) A simple method (eMoS) for T1 mapping is more accurate and robust than the variable flip angle (VFA) method. In: Proceedings of the international society for magnetic resonance in medicine, p. 1673Google Scholar
  27. 27.
    Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205. CrossRefPubMedGoogle Scholar
  28. 28.
    Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29:759–766CrossRefPubMedGoogle Scholar
  29. 29.
    Morrison C, Stanisz G, Henkelman RM (1995) Modeling magnetization transfer for biological-like systems using a semi-solid pool with a super-Lorentzian lineshape and dipolar reservoir. J Magn Reson B 108:103–113. CrossRefPubMedGoogle Scholar
  30. 30.
    Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz GJ (2018) Quantitative magnetization transfer in monitoring glioblastoma (GBM) response to therapy. Sci Rep 8:2475. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stanisz G, Kecojevic A, Bronskill M, Henkelman R (1999) Characterizing white matter with magnetization transfer and T2. Magn Reson Med 42:1128–1136CrossRefPubMedGoogle Scholar
  32. 32.
    Sled JG, Pike GB, Bruce Pike G (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46:923–931. CrossRefPubMedGoogle Scholar
  33. 33.
    Portnoy S, Stanisz GJ (2007) Modeling pulsed magnetization transfer. Magn Reson Med 58:144–155. CrossRefPubMedGoogle Scholar
  34. 34.
    Wu XZ, Listinsky JJ (1994) Effects of transverse cross relaxation on magnetization transfer. J Magn Reson B 105:73–76. CrossRefGoogle Scholar
  35. 35.
    Listerud J (1997) Off-resonance pulsed magnetization transfer in clinical MR imaging: optimization by an analysis of transients. Magn Reson Med 37:693–705CrossRefPubMedGoogle Scholar
  36. 36.
    Provotorov BN (1962) Magnetic resonance saturation in crystals. J Exp Theor Phys 14:1126–1131Google Scholar
  37. 37.
    Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512. CrossRefPubMedGoogle Scholar
  38. 38.
    Mehrabian H, Desmond KL, Soliman H, Sahgal A, Stanisz GJ (2017) Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer. Clin Cancer Res. PubMedGoogle Scholar
  39. 39.
    Levesque IR, Stikov N, Pike GB, Pauly JM (2011) Drift in the magnetization transfer signal: effect on quantitative MT experiments. In: Proceedings of the international society for magnetic resonance in medicine, vol 19, p. 2782Google Scholar
  40. 40.
    Desmond KL, Moosvi F, Stanisz GJ (2014) Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7T. Magn Reson Med 71:1841–1853CrossRefPubMedGoogle Scholar
  41. 41.
    Windschuh J, Zaiss M, Meissner JE, Paech D, Radbruch A, Ladd ME, Bachert P (2015) Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7T. NMR Biomed 28:529–537. CrossRefPubMedGoogle Scholar
  42. 42.
    Desmond KL, Mehrabian H, Chavez S, Sahgal A, Soliman H, Rola R, Stanisz GJ (2016) Chemical exchange saturation transfer for predicting response to stereotactic radiosurgery in human brain metastasis. Magn Reson Med. Google Scholar
  43. 43.
    Cohen BA, Knopp EA, Rusinek H, Babb JS, Zagzag D, Gonen O (2005) Assessing global invasion of newly diagnosed glial tumors with whole-brain proton MR spectroscopy. Am J Neuroradiol 26:2170–2177PubMedGoogle Scholar
  44. 44.
    Gonen O, Viswanathan AK, Catalaa I, Babb J, Udupa J, Grossman RI (1998) Total brain N-acetylaspartate concentration in normal, age-grouped females: quantitation with non-echo proton NMR spectroscopy. Magn Reson Med 40:684–689CrossRefPubMedGoogle Scholar
  45. 45.
    Horvath A, Perlaki G, Toth A, Orsi G, Nagy S, Doczi T, Horvath Z, Bogner P (2016) Biexponential diffusion alterations in the normal-appearing white matter of glioma patients might indicate the presence of global vasogenic edema. J Magn Reson Imaging 44:633–641. CrossRefPubMedGoogle Scholar
  46. 46.
    Horvath A, Perlaki G, Toth A, Orsi G, Nagy S, Doczi T, Horvath Z, Bogner P (2016) Increased diffusion in the normal appearing white matter of brain tumor patients: is this just tumor infiltration? J Neuro-oncol 127:83–90. CrossRefGoogle Scholar
  47. 47.
    Kallenberg K, Goldmann T, Menke J, Strik H, Bock HC, Mohr A, Buhk JH, Frahm J, Dechent P, Knauth M (2014) Abnormalities in the normal appearing white matter of the cerebral hemisphere contralateral to a malignant brain tumor detected by diffusion tensor imaging. Folia Neuropathol 52:226–233. CrossRefPubMedGoogle Scholar
  48. 48.
    Inglese M, Brown S, Johnson G, Law M, Knopp E, Gonen O (2006) Whole-brain N-acetylaspartate spectroscopy and diffusion tensor imaging in patients with newly diagnosed gliomas: a preliminary study. Am J Neuroradiol 27:2137–2140PubMedGoogle Scholar
  49. 49.
    Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441–448. CrossRefPubMedGoogle Scholar
  50. 50.
    Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME (1996) Dichotomy of astrocytoma migration and proliferation. Int J Cancer 67:275–282CrossRefPubMedGoogle Scholar
  51. 51.
    Schiffer D, Cavalla P, Dutto A, Borsotti L (1997) Cell proliferation and invasion in malignant gliomas. Anticancer Res 17:61–69PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medical BiophysicsUniversity of TorontoTorontoCanada
  2. 2.Physical SciencesSunnybrook Research InstituteTorontoCanada
  3. 3.Radiation OncologySunnybrook Health Sciences CentreTorontoCanada
  4. 4.Department of Radiation OncologyUniversity of TorontoTorontoCanada
  5. 5.Department of Neurosurgery and Pediatric NeurosurgeryMedical UniversityLublinPoland
  6. 6.Radiology and Biomedical ImagingUniversity of California, San Francisco (UCSF)San FranciscoUSA

Personalised recommendations