Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors

  • Shiyang Wang
  • Benjamin Liechty
  • Seema Patel
  • Jeffrey S. Weber
  • Travis J. Hollmann
  • Matija Snuderl
  • Matthias A. Karajannis
Clinical Study

Abstract

Immune checkpoint inhibitors targeting programmed cell death 1 (PD-1) or its ligand (PD–L1) have been shown to be effective in treating patients with a variety of cancers. Biomarker studies have found positive associations between clinical response rates and PD–L1 expression on tumor cells, as well as the presence of tumor infiltrating lymphocytes (TILs). It is currently unknown whether tumors associated with neurofibromatosis types 1 and 2 (NF1 and NF2) express PD–L1. We performed immunohistochemistry for PD–L1 (clones SP142 and E1L3N), CD3, CD20, CD8, and CD68 in NF1-related tumors (ten dermal and six plexiform neurofibromas) and NF2-related tumors (ten meningiomas and ten schwannomas) using archival formalin-fixed paraffin-embedded tissues. Expression of PD–L1 was considered positive in cases with > 5% membranous staining of tumor cells, in accordance with previously published biomarker studies. PD–L1 expression in tumor cells (using the SP142 and E1L3N clones, respectively) was assessed as positive in plexiform neurofibromas (6/6 and 5/6) dermal neurofibromas (8/10 and 6/10), schwannomas (7/10 and 10/10), and meningiomas (4/10 and 2/10). Sparse to moderate presence of CD68, CD3, or CD8 positive TILs was found in 36 (100%) of tumor specimens. Our findings indicate that adaptive resistance to cell-mediated immunity may play a major role in the tumor immune microenvironment of NF1 and NF2-associated tumors. Expression of PD–L1 on tumor cells and the presence of TILs suggest that these tumors might be responsive to immunotherapy with immune checkpoint inhibitors, which should be explored in clinical trials for NF patients.

Keywords

Neurofibromatosis type 1 Neurofibromatosis type 2 Neurofibroma Schwannoma Meningioma Tumor infiltrating lymphocytes Programmed death-ligand 1 

Notes

Acknowledgements

This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748 to Memorial Sloan Kettering Cancer Center. The NYU Experimental Pathology Immunohistochemistry Core Laboratory is supported in part by the Laura and Isaac Perlmutter Cancer Center Support Grant; NIH/NCI P30 CA016087 and the National Institutes of Health S10 Instrumentation Grants; NIH/ORIP S10 OD01058 and S10 OD018338. This study was presented in part at the Biennial 2017 Pediatric Neuro-Oncology Basic and Translational Research Conference, New York, NY, June 2017, and the Children’s Tumor Foundation 2017 NF Conference, Washington, DC, June 2017.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ (2017) Neurofibromatosis type 1. Nat Rev Dis Primers 3:17004.  https://doi.org/10.1038/nrdp.2017.4 CrossRefPubMedGoogle Scholar
  2. 2.
    Ardern-Holmes S, Fisher G, North K (2017) Neurofibromatosis type 2. J Child Neurol 32(1):9–22.  https://doi.org/10.1177/0883073816666736 CrossRefPubMedGoogle Scholar
  3. 3.
    Karajannis MA, Ferner RE (2015) Neurofibromatosis-related tumors: emerging biology and therapies. Curr Opin Pediatr 27(1):26–33.  https://doi.org/10.1097/MOP.0000000000000169 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Monroe CL, Dahiya S, Gutmann DH (2017) Dissecting clinical heterogeneity in neurofibromatosis type 1. Annu Rev Pathol 12:53–74.  https://doi.org/10.1146/annurev-pathol-052016-100228 CrossRefPubMedGoogle Scholar
  5. 5.
    Chamoto K, Al-Habsi M, Honjo T (2017) Role of PD-1 in immunity and diseases. Curr Top Microbiol Immunol 410:75–97.  https://doi.org/10.1007/82_2017_67 PubMedGoogle Scholar
  6. 6.
    Kythreotou A, Siddique A, Mauri FA, Bower M, Pinato DJ (2017) PD-L1. J Clin Pathol.  https://doi.org/10.1136/jclinpath-2017-204853 PubMedGoogle Scholar
  7. 7.
    Chen J, Jiang CC, Jin L, Zhang XD (2016) Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 27(3):409–416.  https://doi.org/10.1093/annonc/mdv615 CrossRefPubMedGoogle Scholar
  8. 8.
    Wang X, Huang S, Zhang Y, Zhu L, Wu X (2017) The application and mechanism of PD pathway blockade for cancer therapy. Postgrad Med J.  https://doi.org/10.1136/postgradmedj-2017-135187 Google Scholar
  9. 9.
    Balar AV, Weber JS (2017) PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother 66(5):551–564.  https://doi.org/10.1007/s00262-017-1954-6 CrossRefPubMedGoogle Scholar
  10. 10.
    Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4(3):281–286CrossRefPubMedGoogle Scholar
  11. 11.
    Prada CE, Jousma E, Rizvi TA, Wu J, Dunn RS, Mayes DA, Cancelas JA, Dombi E, Kim MO, West BL, Bollag G, Ratner N (2013) Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 125(1):159–168.  https://doi.org/10.1007/s00401-012-1056-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Shi Y, Bollam SR, White SM, Laughlin SZ, Graham GT, Wadhwa M, Chen H, Nguyen C, Vitte J, Giovannini M, Toretsky J, Yi C (2016) Rac1-mediated DNA damage and inflammation promote Nf2 tumorigenesis but also limit cell-cycle progression. Dev Cell 39(4):452–465.  https://doi.org/10.1016/j.devcel.2016.09.027 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Park SJ, Sawitzki B, Kluwe L, Mautner VF, Holtkamp N, Kurtz A (2013) Serum biomarkers for neurofibromatosis type 1 and early detection of malignant peripheral nerve-sheath tumors. BMC Med 11:109.  https://doi.org/10.1186/1741-7015-11-109 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li H, Velasco-Miguel S, Vass WC, Parada LF, DeClue JE (2002) Epidermal growth factor receptor signaling pathways are associated with tumorigenesis in the Nf1:p53 mouse tumor model. Cancer Res 62(15):4507–4513PubMedGoogle Scholar
  15. 15.
    Dong ZY, Wu SP, Liao RQ, Huang SM, Wu YL (2016) Potential biomarker for checkpoint blockade immunotherapy and treatment strategy. Tumour Biol 37(4):4251–4261.  https://doi.org/10.1007/s13277-016-4812-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Mahoney KM, Sun H, Liao X, Hua P, Callea M, Greenfield EA, Hodi FS, Sharpe AH, Signoretti S, Rodig SJ, Freeman GJ (2015) PD-L1 antibodies to its cytoplasmic domain most clearly delineate cell membranes in immunohistochemical staining of tumor cells. Cancer Immunol Res 3(12):1308–1315.  https://doi.org/10.1158/2326-6066.CIR-15-0116 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Archibald DJ, Neff BA, Voss SG, Splinter PL, Driscoll CL, Link MJ, Dong H, Kwon ED (2010) B7-H1 expression in vestibular schwannomas. Otol Neurotol 31(6):991–997.  https://doi.org/10.1097/MAO.0b013e3181e40e4f CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Han SJ, Reis G, Kohanbash G, Shrivastav S, Magill ST, Molinaro AM, McDermott MW, Theodosopoulos PV, Aghi MK, Berger MS, Butowski NA, Barani I, Phillips JJ, Perry A, Okada H (2016) Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. J Neurooncol 130(3):543–552.  https://doi.org/10.1007/s11060-016-2256-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y, Zhang S, Yang Y, Vakili ST, Yu M, Burns D, Robertson K, Hutchins G, Parada LF, Clapp DW (2008) Nf1-dependent tumors require a microenvironment containing Nf1+/-- and c-kit-dependent bone marrow. Cell 135(3):437–448.  https://doi.org/10.1016/j.cell.2008.08.041 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Solga AC, Pong WW, Kim KY, Cimino PJ, Toonen JA, Walker J, Wylie T, Magrini V, Griffith M, Griffith OL, Ly A, Ellisman MH, Mardis ER, Gutmann DH (2015) RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia 17(10):776–788.  https://doi.org/10.1016/j.neo.2015.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhao Li J, Xu X, Liu R, Guo P, Wang (2016) Dysregulation of IL-10 by macrophages and T cells in recurrent and malignant schwannomas. Int J Clin Exp Pathol 9:7302–7309Google Scholar
  22. 22.
    Ingram DA, Zhang L, McCarthy J, Wenning MJ, Fisher L, Yang FC, Clapp DW, Kapur R (2002) Lymphoproliferative defects in mice lacking the expression of neurofibromin: functional and biochemical consequences of Nf1 deficiency in T-cell development and function. Blood 100(10):3656–3662CrossRefPubMedGoogle Scholar
  23. 23.
    Liu L, Mayes PA, Eastman S, Shi H, Yadavilli S, Zhang T, Yang J, Seestaller-Wehr L, Zhang SY, Hopson C, Tsvetkov L, Jing J, Zhang S, Smothers J, Hoos A (2015) The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin Cancer Res 21(7):1639–1651.  https://doi.org/10.1158/1078-0432.CCR-14-2339 CrossRefPubMedGoogle Scholar
  24. 24.
    Wada J, Suzuki H, Fuchino R, Yamasaki A, Nagai S, Yanai K, Koga K, Nakamura M, Tanaka M, Morisaki T, Katano M (2009) The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res 29(3):881–888PubMedGoogle Scholar
  25. 25.
    Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57:1115–1124.  https://doi.org/10.1007/s00262-007-0441-x CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, Mischel PS, Stokoe D, Pieper RO (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13(1):84–88.  https://doi.org/10.1038/nm1517 CrossRefPubMedGoogle Scholar
  27. 27.
    Goutagny S, Raymond E, Esposito-Farese M, Trunet S, Mawrin C, Bernardeschi D, Larroque B, Sterkers O, Giovannini M, Kalamarides M (2015) Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neurooncol 122(2):313–320.  https://doi.org/10.1007/s11060-014-1710-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Blakeley JO, Ye X, Duda DG, Halpin CF, Bergner AL, Muzikansky A, Merker VL, Gerstner ER, Fayad LM, Ahlawat S, Jacobs MA, Jain RK, Zalewski C, Dombi E, Widemann BC, Plotkin SR (2016) Efficacy and biomarker study of bevacizumab for hearing loss resulting from neurofibromatosis type 2-associated vestibular schwannomas. J Clin Oncol 34(14):1669–1675.  https://doi.org/10.1200/JCO.2015.64.3817 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, Whitcomb P, Martin S, Aschbacher-Smith LE, Rizvi TA, Wu J, Ershler R, Wolters P, Therrien J, Glod J, Belasco JB, Schorry E, Brofferio A, Starosta AJ, Gillespie A, Doyle AL, Ratner N, Widemann BC (2016) Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med 375(26):2550–2560.  https://doi.org/10.1056/NEJMoa1605943 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shiyang Wang
    • 1
  • Benjamin Liechty
    • 2
  • Seema Patel
    • 1
  • Jeffrey S. Weber
    • 3
  • Travis J. Hollmann
    • 4
  • Matija Snuderl
    • 2
  • Matthias A. Karajannis
    • 5
  1. 1.Division of Pediatric Hematology/Oncology, Department of PediatricsNYU Langone HealthNew YorkUSA
  2. 2.Division of Neuropathology, Department of PathologyNYU Langone HealthNew YorkUSA
  3. 3.Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkUSA
  4. 4.Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  5. 5.Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations