Advertisement

Journal of Neuro-Oncology

, Volume 137, Issue 2, pp 223–231 | Cite as

Localized targeted antiangiogenic drug delivery for glioblastoma

  • Gregory D. Arnone
  • Abhiraj D. Bhimani
  • Tania Aguilar
  • Ankit I. Mehta
Topic Review

Abstract

Systemic delivery of antiangiogenic agents has been ineffective in improving the overall survival of patients with both primary and recurrent glioblastoma, in part due to dose-limiting toxicities. With the development of new and efficient localized delivery methods and vehicles, an otherwise lethal dose of antiangiogenic chemotherapy can be used to treat tumors while minimizing systemic side effects. Current in-vitro and in-vivo animal studies have shown promising results that encourage the pursuit towards human clinical trials for localized antiangiogenic treatment in the near future.

Keywords

Glioblastoma Glioma VEGF Angiogenesis Local drug delivery 

References

  1. 1.
    Ung TH, Malone H, Canoll P, Bruce JN (2015) Convection-enhanced delivery for glioblastoma: targeted delivery of antitumor therapeutics. CNS Oncol 4:225–234.  https://doi.org/10.2217/cns.15.12 CrossRefPubMedGoogle Scholar
  2. 2.
    Roy S, Lahiri D, Maji T, Biswas J (2015) Recurrent glioblastoma: where we stand. South Asian J Cancer 4:163–173.  https://doi.org/10.4103/2278-330X.175953 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, McLendon RE, Herndon JE, Jones LW, Kirkpatrick JP, Friedman AH, Vredenburgh JJ, Bigner DD, Friedman HS (2011) A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw 9:414–427CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wicks RT, Azadi J, Mangraviti A, Zhang I, Hwang L, Joshi A, Bow H, Hutt-Cabezas M, Martin KL, Rudek MA, Zhao M, Brem H, Tyler BM (2015) Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma. Neuro Oncol 17:70–80.  https://doi.org/10.1093/neuonc/nou143 CrossRefPubMedGoogle Scholar
  5. 5.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507.  https://doi.org/10.1056/NEJMra0708126 CrossRefPubMedGoogle Scholar
  6. 6.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996  https://doi.org/10.1056/NEJMoa043330 CrossRefPubMedGoogle Scholar
  7. 7.
    Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbalý V, Ram Z, Villano JL, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi JC, Payer F, Mehdorn M, Weil RJ, Pannullo SC, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin PH (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202.  https://doi.org/10.1016/j.ejca.2012.04.011 CrossRefPubMedGoogle Scholar
  8. 8.
    Soda Y, Myskiw C, Rommel A, Verma IM (2013) Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl) 91:439–448.  https://doi.org/10.1007/s00109-013-1019-z CrossRefGoogle Scholar
  9. 9.
    Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502CrossRefPubMedGoogle Scholar
  10. 10.
    Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259.  https://doi.org/10.1158/1078-0432.CCR-06-2309 CrossRefPubMedGoogle Scholar
  11. 11.
    Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745.  https://doi.org/10.1200/JCO.2008.16.3055 CrossRefPubMedGoogle Scholar
  12. 12.
    Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, Phan P, Ross A, Kesari S, Wen PY (2009) An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 92:149–155.  https://doi.org/10.1007/s11060-008-9745-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Xu T, Chen J, Lu Y, Wolff JE (2010) Effects of bevacizumab plus irinotecan on response and survival in patients with recurrent malignant glioma: a systematic review and survival-gain analysis. BMC Cancer 10:252.  https://doi.org/10.1186/1471-2407-10-252 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6:465–477.  https://doi.org/10.1038/nrclinonc.2009.94 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou J, Atsina K-B, Himes BT, Strohbehn GW, Saltzman WM (2012) Novel delivery strategies for glioblastoma. Cancer J.  https://doi.org/10.1097/PPO.0b013e318244d8ae PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bhujbal SV, de Vos P, Niclou SP (2014) Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev 67–68:142–153.  https://doi.org/10.1016/j.addr.2014.01.010 CrossRefPubMedGoogle Scholar
  17. 17.
    Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159:14–26CrossRefPubMedGoogle Scholar
  18. 18.
    Garrastazu Pereira G, Lawson AJ, Buttini F, Sonvico F (2016) Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Deliv 23:2881–2896.  https://doi.org/10.3109/10717544.2015.1114047 CrossRefPubMedGoogle Scholar
  19. 19.
    Perry J, Chambers A, Spithoff K, Laperriere N (2007) Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol 14:189–194CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Storm PB, Renard VM, Moriarity JL, Tyler B, Wilentz RE, Brem H, Weingart JD (2004) Systemic BCNU enhances the efficacy of local delivery of a topoisomerase I inhibitor against malignant glioma. Cancer Chemother Pharmacol 54:361–367CrossRefPubMedGoogle Scholar
  21. 21.
    Vilar G, Tulla-Puche J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9:367–394CrossRefPubMedGoogle Scholar
  22. 22.
    Benny O, Duvshani-Eshet M, Cargioli T, Bello L, Bikfalvi A, Carroll RS, Machluf M (2005) Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth. Clin Cancer Res 11:768–776PubMedGoogle Scholar
  23. 23.
    Shivinsky A, Bronshtein T, Haber T, Machluf M (2015) The effect of AZD2171-or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model. Biomed Microdevices 17:1–15CrossRefGoogle Scholar
  24. 24.
    Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK (2017) Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 126:191–200.  https://doi.org/10.3171/2016.1.JNS151591 CrossRefPubMedGoogle Scholar
  25. 25.
    Watanabe M, Boyer JL, Crystal RG (2010) AAVrh. 10-mediated genetic delivery of bevacizumab to the pleura to provide local anti-VEGF to suppress growth of metastatic lung tumors. Gene Therapy 17:1042–1051CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ding I, Sun JZ, Fenton B, Liu WM, Kimsely P, Okunieff P, Min W (2001) Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in MCa-4 murine mammary carcinomas. Cancer Res 61:526–531PubMedGoogle Scholar
  27. 27.
    Woodworth GF, Dunn GP, Nance EA, Hanes J, Brem H (2014) Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 4:126.  https://doi.org/10.3389/fonc.2014.00126 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu HL, Fan CH, Ting CY, Yeh CK (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4:432–444.  https://doi.org/10.7150/thno.8074 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ai X, Zhong L, Niu H, He Z (2014) Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J Pharm Sci 9:244–250CrossRefGoogle Scholar
  30. 30.
    Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907.  https://doi.org/10.1002/ijc.22732 CrossRefPubMedGoogle Scholar
  31. 31.
    Wei KC, Chu PC, Wang HY, Huang CY, Chen PY, Tsai HC, Lu YJ, Lee PY, Tseng IC, Feng LY, Hsu PW, Yen TC, Liu HL (2013) Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS ONE 8:e58995.  https://doi.org/10.1371/journal.pone.0058995 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425.  https://doi.org/10.1148/radiol.10090699 CrossRefPubMedGoogle Scholar
  33. 33.
    Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N (2013) Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 169:103–111.  https://doi.org/10.1016/j.jconrel.2013.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bize P, Duran R, Fuchs K, Dormond O, Namur J, Decosterd LA, Jordan O, Doelker E, Denys A (2016) Antitumoral Effect of Sunitinib-eluting Beads in the Rabbit VX2 Tumor Model. Radiology 280:425–435.  https://doi.org/10.1148/radiol.2016150361 CrossRefPubMedGoogle Scholar
  35. 35.
    Stefanadis C, Toutouzas K, Tsiamis E, Vavuranakis M, Stefanadi E, Kipshidze N (2008) First-in-man study with bevacizumab-eluting stent: a new approach for the inhibition of atheromatic plaque neovascularisation. EuroIntervention 3:460–464CrossRefPubMedGoogle Scholar
  36. 36.
    Read T-A, Sorensen DR, Mahesparan R, Enger P, Timpl R, Olsen BR, Hjelstuen MH, Haraldseth O, Bjerkvig R (2001) Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 19:29–34CrossRefPubMedGoogle Scholar
  37. 37.
    Cattaneo MG, Pola S, Francescato P, Chillemi F, Vicentini LM (2003) Human endostatin-derived synthetic peptides possess potent antiangiogenic properties in vitro and in vivo. Exp Cell Res 283:230–236CrossRefPubMedGoogle Scholar
  38. 38.
    Pradilla G, Legnani FG, Petrangolini G, Francescato P, Chillemi F, Tyler BM, Gaini SM, Brem H, Olivi A, DiMeco F (2005) Local delivery of a synthetic endostatin fragment for the treatment of experimental gliomas. Neurosurgery 57:1032CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Benny O, Menon LG, Ariel G, Goren E, Kim S-K, Stewman C, Black PM, Carroll RS, Machluf M (2009) Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth. Clin Cancer Res 15:1222–1231CrossRefPubMedGoogle Scholar
  40. 40.
    Tamargo RJ, Leong KW, Brem H (1990) Growth inhibition of the 9L glioma using polymers to release heparin and cortisone acetate. J Neuro Oncol 9:131–138CrossRefGoogle Scholar
  41. 41.
    Schnoor R, Maas SL, Broekman ML (2015) Heparin in malignant glioma: review of preclinical studies and clinical results. J Neuro Oncol 124:151–156CrossRefGoogle Scholar
  42. 42.
    Tamargo RJ, Bok RA, Brem H (1991) Angiogenesis inhibition by minocycline. Can Res 51:672–675Google Scholar
  43. 43.
    Frazier JL, Wang PP, Case D, Tyler BM, Pradilla G, Weingart JD, Brem H (2003) Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma. J Neuro Oncol 64:203–209CrossRefGoogle Scholar
  44. 44.
    Bow H, Hwang LS, Schildhaus N, Xing J, Murray L, Salditch Q, Ye X, Zhang Y, Weingart J, Brem H (2014) Local delivery of angiogenesis-inhibitor minocycline combined with radiotherapy and oral temozolomide chemotherapy in 9L glioma: laboratory investigation. J Neurosurg 120:662–669CrossRefPubMedGoogle Scholar
  45. 45.
    Wang W, Sivakumar W, Torres S, Jhaveri N, Vaikari VP, Gong A, Howard A, Golden EB, Louie SG, Schönthal AH (2015) Effects of convection-enhanced delivery of bevacizumab on survival of glioma-bearing animals. Neurosurg Focus 38:E8CrossRefPubMedGoogle Scholar
  46. 46.
    Hicks MJ, Funato K, Wang L, Aronowitz E, Dyke JP, Ballon DJ, Havlicek DF, Frenk EZ, De BP, Chiuchiolo MJ (2015) Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma. Cancer Gene Therapy 22:1–8CrossRefPubMedGoogle Scholar
  47. 47.
    Fan C-H, Ting C-Y, Liu H-L, Huang C-Y, Hsieh H-Y, Yen T-C, Wei K-C, Yeh C-K (2013) Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 34:2142–2155CrossRefPubMedGoogle Scholar
  48. 48.
    von Baumgarten L, Brucker D, Tirniceru A, Kienast Y, Grau S, Burgold S, Herms J, Winkler F (2011) Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res 17:6192–6205.  https://doi.org/10.1158/1078-0432.CCR-10-1868 CrossRefGoogle Scholar
  49. 49.
    Cohen MH, Shen YL, Keegan P, Pazdur R (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14:1131–1138.  https://doi.org/10.1634/theoncologist.2009-0121 CrossRefPubMedGoogle Scholar
  50. 50.
    Aoki T, Nishikawa R, Sugiyama K, Nonoguchi N, Kawabata N, Mishima K, Adachi J, Kurisu K, Yamasaki F, Tominaga T, Kumabe T, Ueki K, Higuchi F, Yamamoto T, Ishikawa E, Takeshima H, Yamashita S, Arita K, Hirano H, Yamada S, Matsutani M, NPC-08 study group (2014) A multicenter phase I/II study of the BCNU implant (Gliadel(®) Wafer) for Japanese patients with malignant gliomas. Neurol Med Chir (Tokyo) 54: 290–301CrossRefGoogle Scholar
  51. 51.
    Kaiser MG, Parsa AT, Fine RL, Hall JS, Chakrabarti I, Bruce JN (2000) Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat glioma model. Neurosurgery 47:1391–1398. (Discussion 1398–1399)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gregory D. Arnone
    • 1
  • Abhiraj D. Bhimani
    • 1
  • Tania Aguilar
    • 1
  • Ankit I. Mehta
    • 1
  1. 1.Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations