Skip to main content

Advertisement

Log in

Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma (GBM) is one of the most aggressive and incurable primary brain tumors. Identification of novel therapeutic targets is an urgent priority. Programmed cell death 10 (PDCD10), a ubiquitously expressed apoptotic protein, has shown a dual function in different types of cancers and in chemo-resistance. Recently, we reported that PDCD10 was downregulated in human GBM. The aim of this study was to explore the function of PDCD10 in GBM cells.

Methods

PDCD10 was knocked down in three GBM cell lines (U87, T98g and LN229) by lentiviral-mediated shRNA transduction. U87 and T98g transduced cells were used for phenotype study and LN229 and T98g cells were used for apoptosis study. The role of PDCD10 in apoptosis and chemo-resistance was investigated after treatment with staurosporine and temozolomide. A GBM xenograft mouse model was used to confirm the function of PDCD10 in vivo. A protein array was performed in PDCD10-knockdown and control GBM cells.

Results

Knockdown of PDCD10 in GBM cells promoted cell proliferation, adhesion, migration, invasion, and inhibited apoptosis and caspase-3 activation. PDCD10-knockdown accelerated tumor growth and increased tumor mass by 2.1-fold and led to a chemo-resistance of mice treated with temozolomide. Immunostaining revealed extensive Ki67-positive cells and less activation of caspase-3 in PDCD10-knockdown tumors. The protein array demonstrated an increased release of multiple growth factors from PDCD10-knockdown GBM cells.

Conclusions

Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in GBM, suggesting PDCD10 as a potential target for GBM therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research N (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alexander BM, Cloughesy TF (2017) Adult glioblastoma. J Clin Oncol 35(21):2402–2409. https://doi.org/10.1200/JCO.2017.73.0119

    Article  CAS  PubMed  Google Scholar 

  3. Cloughesy TF, Cavenee WK, Mischel PS (2014) Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol 9:1–25. https://doi.org/10.1146/annurev-pathol-011110-130324

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Liu H, Zhang Y, Ma D (1999) cDNA cloning and expression of an apoptosis-related gene, humanTFAR15 gene. Sci China Ser C Life Sci 42(3):323–329. https://doi.org/10.1007/BF03183610

    Article  CAS  Google Scholar 

  5. Petit N, Blecon A, Denier C, Tournier-Lasserve E (2006) Patterns of expression of the three cerebral cavernous malformation (CCM) genes during embryonic and postnatal brain development. Gene Expr Patterns 6(5):495–503. https://doi.org/10.1016/j.modgep.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  6. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E, Societe Francaise de N (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51. https://doi.org/10.1086/426952

    Article  CAS  PubMed  Google Scholar 

  7. Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG, Zhang L, Austin C, Akers AL, Gallione CJ, Rorrer A, Gunel M, Min W, De Souza JM, Lee C, Marchuk DA, Awad IA (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17(3):188–196. https://doi.org/10.1038/gim.2014.97

    Article  CAS  PubMed  Google Scholar 

  8. Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E (2013) Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 19(5):302–308. https://doi.org/10.1016/j.molmed.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Louvi A, Nishimura S, Gunel M (2014) Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development 141(6):1404–1415. https://doi.org/10.1242/dev.093526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127(Pt 4):701–707. https://doi.org/10.1242/jcs.138388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JS, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532(7597):122–126. https://doi.org/10.1038/nature17178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, Ferroni L, Patergnani S, Missiroli S, Goitre L, Trabalzini L, Rimessi A, Giorgi C, Zavan B, Cassoni P, Dejana E, Retta SF, Pinton P (2015) Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 7(11):1403–1417. https://doi.org/10.15252/emmm.201505316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barrier A, Lemoine A, Boelle PY, Tse C, Brault D, Chiappini F, Breittschneider J, Lacaine F, Houry S, Huguier M, Van der Laan MJ, Speed T, Debuire B, Flahault A, Dudoit S (2005) Colon cancer prognosis prediction by gene expression profiling. Oncogene 24(40):6155–6164. https://doi.org/10.1038/sj.onc.1208984

    Article  CAS  PubMed  Google Scholar 

  14. Fu X, Zhang W, Su Y, Lu L, Wang D, Wang H (2016) MicroRNA-103 suppresses tumor cell proliferation by targeting PDCD10 in prostate cancer. Prostate 76(6):543–551. https://doi.org/10.1002/pros.23143

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Hu X, Miao X, Zhu K, Cui S, Meng Q, Sun J, Wang T (2016) MicroRNA-425-5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10. J Cell Mol Med 20(2):360–369. https://doi.org/10.1111/jcmm.12742

    Article  CAS  PubMed  Google Scholar 

  16. Riant F, Bergametti F, Fournier HD, Chapon F, Michalak-Provost S, Cecillon M, Lejeune P, Hosseini H, Choe C, Orth M, Bernreuther C, Boulday G, Denier C, Labauge P, Tournier-Lasserve E (2013) CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 4(4):165–172. https://doi.org/10.1159/000350042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fauth C, Rostasy K, Rath M, Gizewski E, Lederer AG, Sure U, Zschocke J, Felbor U (2015) Highly variable intrafamilial manifestations of a CCM3 mutation ranging from acute childhood cerebral haemorrhage to late-onset meningiomas. Clin Neurol Neurosurg 128:41–43. https://doi.org/10.1016/j.clineuro.2014.10.023

    Article  CAS  PubMed  Google Scholar 

  18. Labauge P, Fontaine B, Neau JP, Bergametti F, Riant F, Blecon A, Marchelli F, Arnoult M, Lannuzel A, Clanet M, Olschwang S, Denier C, Tournier-Lasserve E (2009) Multiple dural lesions mimicking meningiomas in patients with CCM3/PDCD10 mutations. Neurology 72(23):2044–2046. https://doi.org/10.1212/WNL.0b013e3181a92b13

    Article  CAS  PubMed  Google Scholar 

  19. Lambertz N, El Hindy N, Kreitschmann-Andermahr I, Stein KP, Dammann P, Oezkan N, Mueller O, Sure U, Zhu Y (2015) Downregulation of programmed cell death 10 is associated with tumor cell proliferation, hyperangiogenesis and peritumoral edema in human glioblastoma. BMC Cancer 15:759. https://doi.org/10.1186/s12885-015-1709-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu Y, Zhao K, Prinz A, Keyvani K, Lambertz N, Kreitschmann-Andermahr I, Lei T, Sure U (2016) Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Neuro-oncology 18(4):538–548. https://doi.org/10.1093/neuonc/nov155

    Article  CAS  PubMed  Google Scholar 

  21. You C, Zhao K, Dammann P, Keyvani K, Kreitschmann-Andermahr I, Sure U, Zhu Y (2017) EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol Med 21(9):1848–1858. https://doi.org/10.1111/jcmm.13105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu Y, Wu Q, Xu JF, Miller D, Sandalcioglu IE, Zhang JM, Sure U (2010) Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Neurosurg Focus 29(3):E1. https://doi.org/10.3171/2010.5.FOCUS1090

    Article  PubMed  Google Scholar 

  23. El Hindy N, Keyvani K, Pagenstecher A, Dammann P, Sandalcioglu IE, Sure U, Zhu Y (2013) Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro-oncology 15(10):1366–1378. https://doi.org/10.1093/neuonc/not071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zhu Y (2013) Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 17(3):407–418. https://doi.org/10.1111/jcmm.12022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang JY, Ming ZY, Wu AH (2012) Is cerebral cavernous malformation a pre-glioma lesion? Chin Med J 125(24):4511–4513

    PubMed  Google Scholar 

  26. Mian MK, Nahed BV, Walcott BP, Ogilvy CS, Curry WT (2012) Glioblastoma multiforme and cerebral cavernous malformations: intersection of pathophysiologic pathways. J Clin Neurosci 19(6):884–886. https://doi.org/10.1016/j.jocn.2011.07.017

    Article  PubMed  Google Scholar 

  27. Wilson DM, Cohen B, Keshari K, Vogel H, Steinberg G, Dillon W (2014) Case report: glioblastoma multiforme complicating familial cavernous malformations. Clin Neuroradiol 24(3):293–296. https://doi.org/10.1007/s00062-013-0249-3

    Article  CAS  PubMed  Google Scholar 

  28. Schleider E, Stahl S, Wustehube J, Walter U, Fischer A, Felbor U (2011) Evidence for anti-angiogenic and pro-survival functions of the cerebral cavernous malformation protein 3. Neurogenetics 12(1):83–86. https://doi.org/10.1007/s10048-010-0261-6

    Article  CAS  PubMed  Google Scholar 

  29. Lauenborg B, Kopp K, Krejsgaard T, Eriksen KW, Geisler C, Dabelsteen S, Gniadecki R, Zhang Q, Wasik MA, Woetmann A, Odum N (2010) Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis. APMIS 118(10):719–728. https://doi.org/10.1111/j.1600-0463.2010.02669.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen L, Tanriover G, Yano H, Friedlander R, Louvi A, Gunel M (2009) Apoptotic functions of PDCD10/CCM3, the gene mutated in cerebral cavernous malformation 3. Stroke 40(4):1474–1481. https://doi.org/10.1161/STROKEAHA.108.527135

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huerta S, Harris DM, Jazirehi A, Bonavida B, Elashoff D, Livingston EH, Heber D (2003) Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int J Oncol 22(3):663–670

    CAS  PubMed  Google Scholar 

  32. Gonzalez-Fernandez R, Morales M, Avila J, Martin-Vasallo P (2012) Changes in leukocyte gene expression profiles induced by antineoplastic chemotherapy. Oncol Lett 3(6):1341–1349. https://doi.org/10.3892/ol.2012.669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Urfali-Mamatoglu C, Kazan HH, Gunduz U (2018) Dual function of programmed cell death 10 (PDCD10) in drug resistance. Biomed Pharmacother 101:129–136. https://doi.org/10.1016/j.biopha.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  34. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6(7):2585–2597

    CAS  PubMed  Google Scholar 

  35. Messaoudi K, Clavreul A, Lagarce F (2015) Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 20(7):899–905. https://doi.org/10.1016/j.drudis.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  36. Sheng J, Xu Z (2016) Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sinica 48(5):399–410. https://doi.org/10.1093/abbs/gmv131

    Article  CAS  Google Scholar 

  37. Xia W, Fu W, Cai X, Wang M, Chen H, Xing W, Wang Y, Zou M, Xu T, Xu D (2015) Angiogenin promotes U87MG cell proliferation by activating NF-kappaB signaling pathway and downregulating its binding partner FHL3. PLoS ONE 10(2):e0116983. https://doi.org/10.1371/journal.pone.0116983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyake M, Goodison S, Lawton A, Gomes-Giacoia E, Rosser CJ (2015) Angiogenin promotes tumoral growth and angiogenesis by regulating matrix metallopeptidase-2 expression via the ERK1/2 pathway. Oncogene 34(7):890–901. https://doi.org/10.1038/onc.2014.2

    Article  CAS  PubMed  Google Scholar 

  39. Cecchi F, Rabe DC, Bottaro DP (2012) Targeting the HGF/Met signaling pathway in cancer therapy. Expert Opin Ther Targets 16(6):553–572. https://doi.org/10.1517/14728222.2012.680957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie Q, Bradley R, Kang L, Koeman J, Ascierto ML, Worschech A, De Giorgi V, Wang E, Kefene L, Su Y, Essenburg C, Kaufman DW, DeKoning T, Enter MA, O’Rourke TJ, Marincola FM, Vande Woude GF (2012) Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET inhibition in glioblastoma. Proc Natl Acad Sci USA 109(2):570–575. https://doi.org/10.1073/pnas.1119059109

    Article  PubMed  Google Scholar 

  41. Cruickshanks N, Zhang Y, Yuan F, Pahuski M, Gibert M, Abounader R (2017) Role and therapeutic targeting of the HGF/MET pathway in glioblastoma. Cancers. https://doi.org/10.3390/cancers9070087

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rosen LS, Gordon MS, Robert F, Matei DE (2014) Endoglin for targeted cancer treatment. Curr Oncol Rep 16(2):365. https://doi.org/10.1007/s11912-013-0365-x

    Article  CAS  PubMed  Google Scholar 

  43. Seon BK, Haba A, Matsuno F, Takahashi N, Tsujie M, She X, Harada N, Uneda S, Tsujie T, Toi H, Tsai H, Haruta Y (2011) Endoglin-targeted cancer therapy. Curr Drug Deliv 8(1):135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Anja Prinz and Dr. Kai Zhao for their contributions to establishing knockdown cell lines. We also thank Ms. Rita Haase for her technical assistance. X.Y.W. and Y.L.W. received a scholarship from the Medical Faculty, University of Duisburg-Essen. This study was supported financially by the IFORES-program at the Medical Faculty, University of Duisburg-Essen to Y.Z.

Funding

This study was supported financially by the IFORES-program at the Medical Faculty, University of Duisburg-Essen to Y.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and /or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The University of Duisburg-Essen approved all animal experiments (No. 84-02.04.2012.A348).

Informed consent

For this type of study formal consent is not required.

Research involving human and animal participants

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickel, AC., Wan, XY., Saban, DV. et al. Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in glioblastoma. J Neurooncol 141, 31–41 (2019). https://doi.org/10.1007/s11060-018-03017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-03017-7

Keywords

Navigation