Journal of Neuro-Oncology

, Volume 135, Issue 1, pp 29–36 | Cite as

A pilot study on the use of cerebrospinal fluid cell-free DNA in intramedullary spinal ependymoma

  • Ian David Connolly
  • Yingmei Li
  • Wenying Pan
  • Eli Johnson
  • Linya You
  • Hannes Vogel
  • John Ratliff
  • Melanie Hayden Gephart
Laboratory Investigation

Abstract

Cerebrospinal fluid (CSF) represents a promising source of cell-free DNA (cfDNA) for tumors of the central nervous system. A CSF-based liquid biopsy may obviate the need for riskier tissue biopsies and serve as a means for monitoring tumor recurrence or response to therapy. Spinal ependymomas most commonly occur in adults, and aggressive resection must be delicately balanced with the risk of injury to adjacent normal tissue. In patients with subtotal resection, recurrence commonly occurs. A CSF-based liquid biopsy matched to the patient’s spinal ependymoma mutation profile has potential to be more sensitive then surveillance MRI, but the utility has not been well characterized for tumors of the spinal cord. In this study, we collected matched blood, tumor, and CSF samples from three adult patients with WHO grade II intramedullary spinal ependymoma. We performed whole exome sequencing on matched tumor and normal DNA to design Droplet Digital™ PCR (ddPCR) probes for tumor and wild-type mutations. We then interrogated CSF samples for tumor-derived cfDNA by performing ddPCR on extracted cfDNA. Tumor cfDNA was not reliably detected in the CSF of our cohort. Anatomic sequestration and low grade of intramedullary spinal cord tumors likely limits the role of CSF liquid biopsy.

Keywords

Spinal ependymoma Spinal cord tumor Neurofibramatosis type 2 (NF2) Cell-free DNA (cfDNA) Cerebrospinal fluid (CSF) Circulating tumor DNA (ctDNA) Nucleic acid Liquid biopsy Droplet digital PCR 

Notes

Acknowledgements

This work was supported in part by The Hearst Foundation Grant, K08-NS901527, The Curci Foundation Grant, R21-CA 193046-01 (MHG), Stanford MedScholars funding (IDC), and a Stanford CHRI fellowship (YL).

Supplementary material

11060_2017_2557_MOESM1_ESM.xlsx (715 kb)
Supplementary Figure S1: Representative (reactions performed in quadruplicates) ddPCR results for serial dilutions of fragmented tumor DNA from patient 1 using probe 3 (DDX41). Reaction well concentrations are given in ng/uL and match closely with the prepared dilution concentrations. A 0.05 ng/uL ddPCR prepared reaction showed 0.0207 ng/uL of mutant DNA and 0.0279 ng/uL of wild-type DNA (0.0485 ng/uL total) (A). A 0.005 ng/uL reaction showed 0.00138 ng/uL of mutant DNA and 0.0027 ng/uL of wild-type DNA (0.00408 ng/uL total) (B). A 0.0005 ng/uL reaction showed a small amount of unreliably detect wild-type DNA (0.00024 ng/uL) (B). (XLSX 715 KB)
11060_2017_2557_MOESM2_ESM.tiff (7 mb)
Supplementary Figure S2: Additional negative and positive controls. Concentrations of the ddPCR reaction are given in ng/uL for mutant and wild-type. A negative control ddPCR result showing the presence of only wild-type cfDNA in the CSF of a patient with a solid brain metastasis not in contact with the CSF space (A). A positive control ddPCR result showing the presence of both mutant and wild-type cfDNA in the CSF of a patient with a solid brain metastasis that had exposure to the CSF space via the lateral ventricle (B). A positive control ddPCR result showing the presence of both mutant and wild-type cfDNA in CSF of a patient with cytology confirmed leptomeningeal disease (C). (TIFF 7218 KB)
11060_2017_2557_MOESM3_ESM.tiff (7.4 mb)
Supplementary Table S1: Annotated mutations files generated from tumor-normal whole exome sequencing. (TIFF 7534 KB)

References

  1. 1.
    Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335. doi: 10.1016/j.ccr.2005.09.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Gilbert MR, Ruda R, Soffietti R (2010) Ependymomas in adults. Curr Neurol Neurosci Rep 10:240–247. doi: 10.1007/s11910-010-0109-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Nagasawa DT, Smith ZA, Cremer N et al (2011) Complications associated with the treatment for spinal ependymomas. Neurosurg Focus 31:E13. doi: 10.3171/2011.7.FOCUS11158 CrossRefPubMedGoogle Scholar
  4. 4.
    Tseng JH, Tseng MY (2007) Survival analysis of 459 adult patients with primary spinal cancer in England and Wales: a population-based study. Surg Neurol 67:53–58. doi: 10.1016/j.surneu.2006.04.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Chamberlain MC (2003) Ependymomas. Curr Neurol Neurosci Rep 3:193–199. doi: 10.1007/s11910-003-0078-x CrossRefPubMedGoogle Scholar
  6. 6.
    Wu J, Armstrong TS, Gilbert MR (2016) Biology and management of ependymomas. Neuro Oncol 18:902–913. doi: 10.1093/neuonc/now016 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tobin MK, Geraghty JR, Engelhard HH et al (2015) Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus 39:E14. doi: 10.3171/2015.5.FOCUS15158 CrossRefPubMedGoogle Scholar
  8. 8.
    Rudà R, Gilbert M, Soffietti R (2008) Ependymomas of the adult: molecular biology and treatment. Curr Opin Neurol 21:754–761. doi: 10.1097/WCO.0b013e328317efe8 CrossRefPubMedGoogle Scholar
  9. 9.
    Gomez DR, Missett BT, Wara WM, et al (2005) High failure rate in spinal ependymomas with long-term follow-up. Neuro Oncol 7:254–259CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pan W, Gu W, Nagpal S et al (2015) Brain tumor mutations detected in cerebral spinal fluid. Clin Chem 61:514–522. doi: 10.1373/clinchem.2014.235457 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang Y, Springer S, Zhang M et al (2015) Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci USA 112:9704–9709. doi: 10.1073/pnas.1511694112 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schwarzenbach H, Hoon DSB, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437. doi: 10.1038/nrc3066 CrossRefPubMedGoogle Scholar
  13. 13.
    Connolly ID, Li Y, Gephart MH, Nagpal S (2016) The “Liquid Biopsy”: the role of circulating DNA and RNA in central nervous system tumors. Curr Neurol Neurosci Rep 16:25. doi: 10.1007/s11910-016-0629-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Li Y, Pan W, Connolly ID et al (2016) Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases. J Neurooncol. doi: 10.1007/s11060-016-2081-5 Google Scholar
  15. 15.
    Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566. doi: 10.1038/nprot.2015.105 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRefPubMedGoogle Scholar
  17. 17.
    Andreiuolo F, Puget S, Peyre M et al (2010) Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol 12:1126–1134. doi: 10.1093/neuonc/noq074 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bettegowda C, Agrawal N, Jiao Y et al (2013) Exomic sequencing of four rare central nervous system tumor types. Oncotarget 4:572–583CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Okada T, Lopez-Lago M, Giancotti FG (2005) Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171:361–371. doi: 10.1083/jcb.200503165 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Connolly ID, Ali R, Li Y, Gephart MH (2015) Genetic and molecular distinctions in spinal ependymomas: a review. Clin Neurol Neurosurg 139:210–215. doi: 10.1016/j.clineuro.2015.10.011 CrossRefPubMedGoogle Scholar
  21. 21.
    Leja J, Essaghir A, Essand M et al (2009) Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol 22:261–272. doi: 10.1038/modpathol.2008.174 CrossRefPubMedGoogle Scholar
  22. 22.
    Nilsson O (2013) Profiling of ileal carcinoids. Neuroendocrinology 97:7–18. doi: 10.1159/000343232 CrossRefPubMedGoogle Scholar
  23. 23.
    Jiménez AJ, Domínguez-Pinos M-D, Guerra MM et al (2014) Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue barriers 2:e28426. doi: 10.4161/tisb.28426 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Whish S, Dziegielewska KM, Møllgård K et al (2015) The inner csf-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 9:1–15. doi: 10.3389/fnins.2015.00016 CrossRefGoogle Scholar
  25. 25.
    Hammarström L (1966) Autoradiographic studies on the distribution of c14-labelled ascorbic acid and dehydroascorbic acid. Acta Physiol Scand 70:1–83CrossRefGoogle Scholar
  26. 26.
    Lorenzo AV, Snodgrass SR (1972) Leucine transport from the ventricles and the cranial subarachnoid space in the cat1. J Neurochem 19:1287–1298CrossRefPubMedGoogle Scholar
  27. 27.
    Spector R, Keep RF, Robert Snodgrass S et al (2015) A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol 267:78–86. doi: 10.1016/j.expneurol.2015.02.032 CrossRefPubMedGoogle Scholar
  28. 28.
    Spector R (1981) Penetration of ascorbic acid from cerebrospinal fluid into brain. Exp Neurol 72:645–653CrossRefPubMedGoogle Scholar
  29. 29.
    Cifuentes M, Fernández-LLebrez P, Perez J et al (1992) Distribution of intraventricularly injected horseradish peroxidase in cerebrospinal fluid compartments of the rat spinal cord. Cell Tissue Res 270:485–494CrossRefPubMedGoogle Scholar
  30. 30.
    Li Y, Pan W, Connolly ID et al (2016) Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases. J Neurooncol 128:93–100. doi: 10.1007/s11060-016-2081-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of NeurosurgeryStanford University School of MedicineStanfordUSA
  2. 2.Department of Bioengineering, James H. Clark CenterStanford UniversityStanfordUSA
  3. 3.Department of PathologyStanford University School of MedicineStanfordUSA

Personalised recommendations