Advertisement

Journal of Neuro-Oncology

, Volume 135, Issue 1, pp 67–74 | Cite as

Prognostic significance of corticotroph staining in radiosurgery for non-functioning pituitary adenomas: a multicenter study

  • Or Cohen-Inbar
  • Zhiyuan Xu
  • Cheng-chia Lee
  • Chin-Chun Wu
  • Tomáš Chytka
  • Danilo Silva
  • Mayur Sharma
  • Hesham Radwan
  • Inga S. Grills
  • Brandon Nguyen
  • Zaid Siddiqui
  • David Mathieu
  • Christian Iorio-Morin
  • Amparo Wolf
  • Christopher P. Cifarelli
  • Daniel T. Cifarelli
  • L. Dade Lunsford
  • Douglas Kondziolka
  • Jason P. Sheehan
Clinical Study

Abstract

Silent corticotroph staining pituitary adenoma (SCA) represents an uncommon subset of Non-Functioning adenomas (NFAs), hypothesized to be more locally aggressive. In this retrospective multicenter study, we investigate the safety and effectiveness of Stereotactic Radiosurgery (SRS) in patients with SCA compared with other non-SCA NFA’s. Eight centers participating in the International Gamma-Knife Research Foundation (IGKRF) contributed to this study. Outcomes of 50 patients with confirmed SCAs and 307 patients with confirmed non-SCA NFA’s treated with SRS were evaluated. Groups were matched. SCA was characterized by a lack of clinical evidence of Cushing disease, yet with positive immunostaining for corticotroph. Median age was 55.2 years (13.7–87). All patients underwent at least one trans-sphenoidal tumor resection prior to SRS. SRS parameters were comparable as well. Median follow-up 40 months (6-163). Overall tumor control rate (TCR) 91.2% (n = 280). In the SCA group, TCR were 82% (n = 41) versus 94.1% (n = 289) for the control-NFA (p = 0.0065). The SCA group showed a significantly higher incidence of new post-SRS visual deficit (p < 0.0001) assigned to tumor progression and growth, and post-SRS weakness and fatigue (p < 0.0001). In univariate and multivariate analysis, only the status of silent corticotroph staining (p = 0.005, p = 0.009 respectively) and margin dose (p < 0.0005, p = 0.0037 respectively) significantly influenced progression rate. A margin dose of ≥17 Gy was noted to influence the adenoma progression rate in the entire cohort (p = 0.003). Silent corticotroph staining represents an independent factor for adenoma progression and hypopituitarism after SRS. A higher margin dose may convey a greater chance of TCR.

Keywords

Radiosurgery Gamma knife Silent ACTH staining Pituitary adenomas 

Notes

Funding

This study was completely independently founded. We state that no personal or institutional financial interest exists for drugs, materials, or devices described in our submission.

Compliance with ethical standards

Disclosure

Dr. Inga S. Grills has stock ownership and serve on the Board of Directors in a company called Greater Michigan Gamma Knife. In addition, Dr. Lunsford is a shareholder and consultant for Elekta AB.

References

  1. 1.
    Dekkers OM, Pereira AM, Romijn JA (2008) Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. J Clin Endocrinol Metab 93:3717–3726CrossRefPubMedGoogle Scholar
  2. 2.
    Melmed S (2006) Medical progress: acromegaly. N Engl J Med 355:2558–2573CrossRefPubMedGoogle Scholar
  3. 3.
    Vance ML (2004) Treatment of patients with a pituitary adenoma: one clinician’s experience. Neurosurg Focus 16:E1CrossRefPubMedGoogle Scholar
  4. 4.
    Sheehan JP, Xu Z, Lobo MJ (2012) External beam radiation therapy and stereotactic radiosurgery for pituitary adenomas. Neurosurg Clin N Am 23:571–586CrossRefPubMedGoogle Scholar
  5. 5.
    Kovacs K, Horvath E, Bayley TA, Hassaram ST, Ezrin C (1978) Silent corticotroph cell adenoma with lysosomal accumulation and crinophagy. A distinct clinicopathologic entity. Am J Med 64:492–499CrossRefPubMedGoogle Scholar
  6. 6.
    Horvath E, Kovacs K, Killinger DW, Smyth HS, Platts ME, Singer W (1980) Silent corticotropic adenomas of the human pituitary gland: a histologic, immunocytologic, and ultrastructural study. Am J Pathol 98:617–638PubMedPubMedCentralGoogle Scholar
  7. 7.
    Xu Z, Ellis S, Lee CC, Starke RM, Schlesinger D, Lee Vance M et al (2014) Silent corticotroph adenomas after stereotactic radiosurgery: a case-control study. Int J Radiat Oncol Biol Phys 90:903–910CrossRefPubMedGoogle Scholar
  8. 8.
    Young WF Jr (2000) Clinically nonfunctioning pituitary adenomas. Humana Press, TotowaCrossRefGoogle Scholar
  9. 9.
    Bradley KJ, Wass JA, Turner HE (2003) Non-functioning pituitary adenomas with positive immunoreactivity for ACTH behave more aggressively than ACTH immunonegative tumours but do not recur more frequently. Clin Endocrinol 58:59–64CrossRefGoogle Scholar
  10. 10.
    Cho HY, Cho SW, Kim SW, Shin CS, Park KS, Kim SY (2010) Silent corticotroph adenomas have unique recurrence characteristics compared with other nonfunctioning pituitary adenomas. Clin Endocrinol 72:648–653CrossRefGoogle Scholar
  11. 11.
    Cooper O, Ben-Shlomo A, Bonert V, Bannykh S, Mirocha J, Melmed S (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1:80–92CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jahangiri A, Wagner JR, Pekmezci M, Hiniker A, Chang EF, Kunwar S et al (2013) A comprehensive long-term retrospective analysis of silent corticotrophic adenomas versus hormone-negative adenomas. Neurosurgery 73:8–17 (discussion 17–18)CrossRefPubMedGoogle Scholar
  13. 13.
    Raverot G, Wierinckx A, Jouanneau E, Auger C, Borson-Chazot F, Lachuer J et al (2010) Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing’s disease. Eur J Endocrinol 163(1):35–43CrossRefPubMedGoogle Scholar
  14. 14.
    Roncaroli F, Scheithauer BW, Young WF, Horvath E, Kovacs K, Kros JM et al (2003) Silent corticotroph carcinoma of the adenohypophysis: a report of five cases. Am J Surg Pathol 27(4):477–486CrossRefPubMedGoogle Scholar
  15. 15.
    Scheithauer BW, Jaap AJ, Horvath E, Kovacs K, Lloyd RV, Meyer FB et al (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47:723–729 (discussion 729–730)PubMedGoogle Scholar
  16. 16.
    Webb KM, Laurent JJ, Okonkwo DO, Lopes MB, Vance ML, Laws ER Jr (2003) Clinical characteristics of silent corticotrophic adenomas and creation of an internet-accessible database to facilitate their multi-institutional study. Neurosurgery 53:1076–1084 (discussion 1084–1085)CrossRefPubMedGoogle Scholar
  17. 17.
    Alahmadi H, Lee D, Wilson JR, Hayhurst C, Mete O, Gentili F et al (2012) Clinical features of silent corticotroph adenomas. Acta Neurochir 154:1493–1498CrossRefPubMedGoogle Scholar
  18. 18.
    Chen L, White WL, Spetzler RF, Xu B (2011) A prospective study of nonfunctioning pituitary adenomas: presentation, management, and clinical outcome. J Neurooncol 102:129–138CrossRefPubMedGoogle Scholar
  19. 19.
    Ioachimescu AG, Eiland L, Chhabra VS, Mastrogianakis GM, Schniederjan MJ, Brat D et al (2012) Silent corticotroph adenomas: Emory University cohort and comparison with ACTH negative nonfunctioning pituitary adenomas. Neurosurgery 71:296–303 (discussion 304)CrossRefPubMedGoogle Scholar
  20. 20.
    Sheehan JP, Starke RM, Mathieu D, Young B, Sneed PK, Chiang VL et al (2013) Gamma Knife radiosurgery for the management of nonfunctioning pituitary adenomas: a multicenter study. J Neurosurg 119:446–456CrossRefPubMedGoogle Scholar
  21. 21.
    Snell JW, Sheehan J, Stroila M, Steiner L (2006) Assessment of imaging studies used with radiosurgery: a volumetric algorithm and an estimation of its error. Technical note. J Neurosurg 104:157–162CrossRefPubMedGoogle Scholar
  22. 22.
    Murad MH, Fernandez-Balsells MM, Barwise A, Gallegos-Orozco JF, Paul A, Lane MA et al (2010) Outcomes of surgical treatment for nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Clin Endocrinol 73(6):777–791CrossRefGoogle Scholar
  23. 23.
    Gopalan R, Schlesinger D, Vance ML, Laws E, Sheehan J (2011) Long-term outcomes after Gamma Knife radiosurgery for patients with a nonfunctioning pituitary adenoma. Neurosurgery 69:284–293CrossRefPubMedGoogle Scholar
  24. 24.
    Pollock BE, Cochran J, Natt N, Brown PD, Erickson D, Link MJ et al (2008) Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol Biol Phys 70:1325–1329CrossRefPubMedGoogle Scholar
  25. 25.
    Cohen-Inbar O, Ramesh A, Xu Z, Vance ML, Schlesinger D, Sheehan JP (2016) Gamma knife radiosurgery in patients with persistent acromegaly or Cushing’s disease: long-term risk of hypopituitarism. Clin Endocrinol 84:524–531CrossRefGoogle Scholar
  26. 26.
    Xu Z, Lee Vance M, Schlesinger D, Sheehan JP (2013) Hypopituitarism after stereotactic radiosurgery for pituitary adenomas. Neurosurgery 72:630–637CrossRefPubMedGoogle Scholar
  27. 27.
    Ding D, Starke RM, Sheehan JP (2014) Treatment paradigms for pituitary adenomas: defining the roles of radiosurgery and radiation therapy. J Neurooncol 117:445–457CrossRefPubMedGoogle Scholar
  28. 28.
    Hoybye C, Rahn T (2009) Adjuvant Gamma Knife radiosurgery in non-functioning pituitary adenomas; low risk of long-term complications in selected patients. Pituitary 12:211–216CrossRefPubMedGoogle Scholar
  29. 29.
    Izawa M, Hayashi M, Nakaya K, Satoh H, Ochiai T, Hori T et al (2000) Gamma Knife radiosurgery for pituitary adenomas. J Neurosurg 93:19–22CrossRefPubMedGoogle Scholar
  30. 30.
    Jagannathan J, Sheehan JP, Pouratian N, Laws ER, Steiner L, Vance ML (2007) Gamma Knife surgery for Cushing’s disease. J Neurosurg 106:980–987CrossRefPubMedGoogle Scholar
  31. 31.
    Starke RM, Williams BJ, Jane JA Jr, Sheehan JP (2012) Gamma Knife surgery for patients with nonfunctioning pituitary macroadenomas: predictors of tumor control, neurological deficits, and hypopituitarism. J Neurosurg 117:129–135CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Or Cohen-Inbar
    • 1
    • 13
  • Zhiyuan Xu
    • 1
  • Cheng-chia Lee
    • 2
    • 3
  • Chin-Chun Wu
    • 4
  • Tomáš Chytka
    • 5
  • Danilo Silva
    • 6
  • Mayur Sharma
    • 6
  • Hesham Radwan
    • 6
  • Inga S. Grills
    • 7
  • Brandon Nguyen
    • 7
  • Zaid Siddiqui
    • 7
  • David Mathieu
    • 8
  • Christian Iorio-Morin
    • 8
  • Amparo Wolf
    • 9
  • Christopher P. Cifarelli
    • 10
  • Daniel T. Cifarelli
    • 11
  • L. Dade Lunsford
    • 12
  • Douglas Kondziolka
    • 9
  • Jason P. Sheehan
    • 1
  1. 1.Department of NeurosurgeryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Neurosurgery, Neurological InstituteTaipei Veteran General HospitalTaipeiTaiwan, Republic of China
  3. 3.National Yang-Ming UniversityTaipeiTaiwan, Republic of China
  4. 4.Department of RadiologyTaipei Veteran General HospitalTaipeiTaiwan, Republic of China
  5. 5.Department of Stereotactic and Radiation NeurosurgeryNa Homolce HospitalPragueCzech Republic
  6. 6.Rose-Ella Burkhardt Brain Tumor and Neuro-oncology CenterCleveland ClinicClevelandUSA
  7. 7.Department of Radiation OncologyBeaumont Health SystemRoyal OakUSA
  8. 8.Department of Neurosurgery, Centre de Recherche Clinique Étienne-LeBelUniversity of SherbrookeSherbrookeCanada
  9. 9.Department of NeurosurgeryNew York University Langone Medical CenterNew YorkUSA
  10. 10.Department of NeurosurgeryWest Virginia UniversityMorgantownUSA
  11. 11.Department of AnesthesiologyWest Virginia UniversityMorgantownUSA
  12. 12.Department of NeurosurgeryUniversity of PittsburghPittsburghUSA
  13. 13.Department of Neurological SurgeryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations