Advertisement

Journal of Neuro-Oncology

, Volume 130, Issue 3, pp 485–494 | Cite as

Time-delayed contrast-enhanced MRI improves detection of brain metastases: a prospective validation of diagnostic yield

  • Or Cohen-Inbar
  • Zhiyuan Xu
  • Blair Dodson
  • Tanvir Rizvi
  • Christopher R. Durst
  • Sugoto Mukherjee
  • Jason P. Sheehan
Clinical Study

Abstract

The radiological detection of brain metastases (BMs) is essential for optimizing a patient’s treatment. This statement is even more valid when stereotactic radiosurgery, a noninvasive image guided treatment that can target BM as small as 1–2 mm, is delivered as part of that care. The timing of image acquisition after contrast administration can influence the diagnostic sensitivity of contrast enhanced magnetic resonance imaging (MRI) for BM. Investigate the effect of time delayed acquisition after administration of intravenous Gadavist® (Gadobutrol 1 mmol/ml) on the detection of BM. This is a prospective IRB approved study of 50 patients with BM who underwent post-contrast MRI sequences after injection of 0.1 mmol/kg Gadavist® as part of clinical care (time-t0), followed by axial T1 sequences after a 10 min (time-t1) and 20 min delay (time-t2). MRI studies were blindly compared by three neuroradiologists. Single measure intraclass correlation coefficients were very high (0.914, 0.904 and 0.905 for time-t0, time-t1 and time-t2 respectively), corresponding to a reliable inter-observer correlation. The delayed MRI at time-t2 delayed sequences showed a significant and consistently higher diagnostic sensitivity for BM by every participating neuroradiologist and for the entire cohort (p = 0.016, 0.035 and 0.034 respectively). A disproportionately high representation of BM detected on the delayed studies was located within posterior circulation territories (compared to predictions based on tissue volume and blood-flow volumes). Considering the safe and potentially high yield nature of delayed MRI sequences, it should supplement the standard MRI sequences in all patients in need of precise delineation of their intracranial disease.

Keywords

Time delayed MRI sequences Stereotactic radiosurgery Improved diagnostic sensitivity Posterior circulation 

Notes

Compliance with ethical standards

Conflicts of interest

The authors have no personal or institutional financial interest in drugs or materials in relation to this paper.

Supplementary material

11060_2016_2242_MOESM1_ESM.tif (410 kb)
Supplementary material 1 (TIF 410 KB)

References

  1. 1.
    Soffietti R, Rudā R, Mutani R (2002) Management of brain metastases. J Neurol 249:1357–1369CrossRefPubMedGoogle Scholar
  2. 2.
    Kushnirsky M, Nguyen V, Katz JS et al (2016) Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes. J Neurosurg 124(2):489–495CrossRefPubMedGoogle Scholar
  3. 3.
    Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14:48–54CrossRefPubMedGoogle Scholar
  4. 4.
    Patel KR, Prabhu RS, Kandula S et al (2014) Intracranial control and radiographic changes with adjuvant radiation therapy for resected brain metastases: whole brain radiotherapy versus stereotactic radiosurgery alone. J Neurooncol 120(3):657–663CrossRefPubMedGoogle Scholar
  5. 5.
    Yamamoto M, Serizawa T, Shuto T et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 15:387–395CrossRefPubMedGoogle Scholar
  6. 6.
    Lu JJ, Brady LW (eds) (2011) Decision making in radiation oncology. Springer, BerlinGoogle Scholar
  7. 7.
    Tsao MN, Rades D, Wirth A et al (2012) International practice survey on the management of brain metastases: Third International Consensus Workshop on Palliative Radiotherapy and Symptom Control. Clin Oncol 24(6):e81–e92CrossRefGoogle Scholar
  8. 8.
    Tsao MN, Rades D, Wirth A et al (2012) Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol 2(3):210–225CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grzesiakowska U, Tacikowska M (2002) An assessment of the effectiveness of magnetic resonance imaging in delayed sequences after administration of Gd-DTPA contrast in the detection of metastatic lesions in the brain. Med Sci Monit 8(1):MT21–MT24PubMedGoogle Scholar
  10. 10.
    Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044CrossRefPubMedGoogle Scholar
  11. 11.
    Aoyama H, Tago M, Kato N et al (2007) Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 68:1388–1395CrossRefPubMedGoogle Scholar
  12. 12.
    Brown PD, Asher AL, Ballman KV (2015) et al NCCTG N0574 (Alliance): a phase III randomized trial of whole brain radiation therapy (WBRT) in addition to radiosurgery (SRS) in patients with 1 to 3 brain metastases. ASCO Annu Meet J Clin Oncol 33(suppl 18):LBA4Google Scholar
  13. 13.
    Correa DD, DeAngelis LM, Shi W et al (2004) Cognitive functions in survivors of primary central nervous system lymphoma. Neurology 62:548–555CrossRefPubMedGoogle Scholar
  14. 14.
    Cohen-Inbar O, Melmer P, Lee CC et al (2015) Leukoencephalopathy in long term brain metastases survivors treated with radiosurgery. J Neurooncol 126(2):289–298CrossRefGoogle Scholar
  15. 15.
    Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491CrossRefPubMedGoogle Scholar
  16. 16.
    Do L, Pezner R, Radany E et al (2009) Resection followed by stereotactic radiosurgery to resection cavity for intracranial metastases. Int J Radiat Oncol Biol Phys 73:486–491CrossRefPubMedGoogle Scholar
  17. 17.
    Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J Clin Oncol 29:134–141CrossRefPubMedGoogle Scholar
  18. 18.
    Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13(7):674–681CrossRefPubMedGoogle Scholar
  19. 19.
    Essig M, Anzalone N, Combs SE et al (2012) MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. Am J Neuroradiol 33(5):803–817CrossRefPubMedGoogle Scholar
  20. 20.
    Chen W, Wang L, Zhu W et al (2012) Multicontrast single-slab 3D MRI to detect cerebral metastasis. Am J Roentgenol 198(1):27–32CrossRefGoogle Scholar
  21. 21.
    Yuh WTC, Fisher DJ, Engelken JD et al (1991) MR evaluation of CNS tumors: dose comparison study with gadopentetate dimeglumine and gadoteridol. Radiology 180:485–491CrossRefPubMedGoogle Scholar
  22. 22.
    Yuh WTC, Engelken JD, Muhonen MG et al (1992) Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases. Am J Neuroradiol 13:335–345PubMedGoogle Scholar
  23. 23.
    Jeon JY, Choi JW, Roh HG et al (2014) Effect of imaging time in the magnetic resonance detection of intracerebral metastases using single dose gadobutrol. Korean J Radiol 15(1):145–150CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Essig M, Weber MA, von Tengg-Kobligk H et al (2006) Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 10(2):237–246Google Scholar
  25. 25.
    Zhang B, MacFadden D, Damyanovich AZ et al (2010) Development of a geometrically accurate imaging protocol at 3 T MRI for stereotactic radiosurgery treatment planning. Phys Med Biol 55(22):6601–6615CrossRefPubMedGoogle Scholar
  26. 26.
    Healy ME, Hesselink JR, Press GA et al (1987) Increased detection of intracranial metastases with intravenous Gd-DTPA. Radiology 165:619–624CrossRefPubMedGoogle Scholar
  27. 27.
    Niendorf HP, Laniado M, Semmler W et al (1987) Dose administration of gadolinium-DTPA in MR imaging of intracranial tumors. Am J Neuroradiol 8:803–815PubMedGoogle Scholar
  28. 28.
    Russell EJ, Geremia GK, Johnson CE et al (1987) Multiple cerebral metastases: detectability with Gd-DTPA-enhanced MR imaging. Radiology 165:609–617CrossRefPubMedGoogle Scholar
  29. 29.
    Yuh WT, Tali ET, Nguyen HD et al (1995) The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. Am J Neuroradiol 16(2):373–380PubMedGoogle Scholar
  30. 30.
    Uysal E, Erturk SM, Yildirim H et al (2007) Sensitivity of immediate and delayed gadolinium-enhanced MRI after injection of 0.5 M and 1.0 M gadolinium chelates for detecting multiple sclerosis lesions. Am J Roentgenol 188:697–702CrossRefGoogle Scholar
  31. 31.
    Knopp MV, Runge VM, Essig M et al (2004) Primary and secondary brain tumors at MR imaging: bicentric intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine. Radiology 230:55–64CrossRefPubMedGoogle Scholar
  32. 32.
    Runge VM, Kirsch JE, Burke VJ et al (1992) High-dose gadoteridol in MR imaging of intracranial neoplasms. J Magn Reson Imaging 2:9–18CrossRefPubMedGoogle Scholar
  33. 33.
    Yuh WTC, Fisher DJ, Nguyen HD et al (1992) The application of contrast agents in the evaluation of neoplasms of the central nervous system. Top Magn Reson Imaging 4(4):1–6CrossRefPubMedGoogle Scholar
  34. 34.
    Haustein J, Laniado M, Niendorf H-P et al (1992) Administration of gadopentetate dimeglumine in MR imaging of intracranial tumors: dosage and field strength. Am J Neuroradiol 13:1199–1206PubMedGoogle Scholar
  35. 35.
    Jacobs AH, Kracht LW, Gossmann A et al (2005) Imaging in neurooncology. NeuroRx 2(2):333–347CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Suh CH, Kim HS, Choi YJ et al (2013) Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Am J Neuroradiol 34:2278–2286CrossRefPubMedGoogle Scholar
  37. 37.
    Lewis T (2015) Human brain: facts, anatomy & mapping project. http://www.livescience.com/29365-human-brain.html. Accessed 10 2015
  38. 38.
    Swanson LW (1995) Mapping the human brain: past, present, and future. Trends Neurosci 18(11):471–474CrossRefPubMedGoogle Scholar
  39. 39.
    Brain, brain information, facts, news, photos—National Geographic. http://science.nationalgeographic.com/science/health-and-human-body/human-body/brain-article/. Accessed 10 2015
  40. 40.
    Cohen-Inbar Or (2015) Focused neuroanatomy. Nova Publishers, New YorkGoogle Scholar
  41. 41.
    Oktar SO, Yücel C, Karaosmanoglu D et al (2006) Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase-contrast MR imaging. Am J Neuroradiol 27(2):363–369PubMedGoogle Scholar
  42. 42.
    Hallgren KA (2012) Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol 8(1):23–34CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Martini N (1993) Operable lung cancer. CA Cancer J Clin 43:201–214CrossRefPubMedGoogle Scholar
  44. 44.
    Russell DJ, Rubenstein LJ (eds) (1989) Pathology of tumours of the nervous system, 5th edn. Williams & Wilkins, Baltimore, pp 825–841Google Scholar
  45. 45.
    Sze G, Johnson C, Kawamura Y et al (1998) Comparison of single and triple-dose contrast material in the MR screening of brain metastases. Am J Neuroradiol 19(5):821–828PubMedGoogle Scholar
  46. 46.
    Quattrocchi CC, Errante Y, Gaudino C et al (2012) Spatial brain distribution of intra-axial metastatic lesions in breast and lung cancer patients. J Neurooncol 110(1):79–87CrossRefPubMedGoogle Scholar
  47. 47.
    Hawighorst H, Schad LR, Gademann G et al (1995) A 3D T1-weighted gradient-echo sequence for routine use in 3D radiosurgical treatment planning of brain metastases: first clinical results. Eur Radiol 5:19–25CrossRefGoogle Scholar
  48. 48.
    Wilkinson ID, Jellineck DA, Levy D et al (2006) Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery 58(4):640–646CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Or Cohen-Inbar
    • 1
  • Zhiyuan Xu
    • 1
  • Blair Dodson
    • 1
  • Tanvir Rizvi
    • 2
  • Christopher R. Durst
    • 2
  • Sugoto Mukherjee
    • 2
  • Jason P. Sheehan
    • 1
  1. 1.Department of Neurological SurgeryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Division of Diagnostic and Interventional NeuroradiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations