Advertisement

Journal of Neuro-Oncology

, Volume 129, Issue 2, pp 231–241 | Cite as

Antitumor effects of minodronate, a third-generation nitrogen-containing bisphosphonate, in synergy with γδT cells in human glioblastoma in vitro and in vivo

  • Tsutomu Nakazawa
  • Mitsutoshi Nakamura
  • Ryosuke Matsuda
  • Fumihiko Nishimura
  • Young Soo Park
  • Yasushi Motoyama
  • Yasuo Hironaka
  • Ichiro Nakagawa
  • Hiroshi Yokota
  • Shuichi Yamada
  • Kentaro Tamura
  • Yasuhiro Takeshima
  • Kouji Omoto
  • Yoshitaka Tanaka
  • Yukiteru Ouji
  • Masahide Yoshikawa
  • Takahiro Tsujimura
  • Hiroyuki Nakase
Laboratory Investigation

Abstract

Nitrogen-containing bisphosphonates (N-BPs), which prevent bone resorption, exert direct and γδT cell (GDT)-mediated antitumor effects against several tumor cell types, including glioblastoma (GBM). However, limited information is available regarding the antitumor effects of N-BPs in GBM. Specifically, the antitumor effects of minodronate (MDA), a third-generation N-BP, in GBM are yet unclear. This study aimed to investigate the antitumor effects of MDA in GBM in vitro and in vivo. We performed growth inhibition and apoptosis detection assays using the GBM cell lines U87MG and U138MG. Apoptosis inhibition assays were also conducted. In vivo xenograft assays were performed in highly immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Sug/Jic mice subcutaneously implanted with U87MG and U138MG cells. Growth inhibition and apoptosis detection assays demonstrated that MDA inhibited GBM cell growth via apoptosis, which was markedly enhanced by ex vivo expanded GDT. A pan-caspase inhibitor, z-VAD-fmk, inhibited MDA-induced U138MG apoptosis and MDA/GDT-induced U87MG and U138MG apoptosis. But z-VAD-fmk increased MDA-induced U87MG apoptosis. MDA/GDT-mediated apoptosis was blocked by the anti-T cell receptor (TCR) Vγ9, mevalonate pathway inhibitor, granzyme B inhibitor, and antitumor necrosis factor (TNF)-α. In vivo xenograft assays showed that combined intraperitoneal administration of MDA/GDT induced antitumor effects on unestablished U87MG-derived subcutaneous tumors. MDA exerted direct and GDT-mediated anti-GBM apoptotic effects in a caspase-dependent manner. GDT recognized MDA-exposed GBM cells via TCRVγ9 and induced apoptosis via granzyme B and TNF-α release. Because MDA elicited anti-GBM effects in synergy with GDT in vivo, a combination of MDA and ex vivo-generated GDT could be an effective treatment in patients with GBM.

Keywords

Apoptosis Glioblastoma Minodronate NOG mouse γδT cells 

Notes

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 26861159).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11060_2016_2186_MOESM1_ESM.pptx (104 kb)
Supplementary material 1 (PPTX 104 KB)
11060_2016_2186_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 12 KB)

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  3. 3.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMedGoogle Scholar
  4. 4.
    Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Russell RG (2006) Bisphosphonates: from bench to bedside. Ann N Y Acad Sci 1068:367–401CrossRefPubMedGoogle Scholar
  6. 6.
    Dunford JE, Rogers MJ, Ebetino FH, Phipps RJ, Coxon FP (2006) Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases. J Bone Miner Res 21:684–694CrossRefPubMedGoogle Scholar
  7. 7.
    Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410CrossRefPubMedGoogle Scholar
  8. 8.
    Zerial M, Stenmark H (1993) Rab GTPases in vesicular transport. Curr Opin Cell Biol 5:613–620CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang D, Udagawa N, Nakamura I, Murakami H, Saito S, Yamasaki K, Shibasaki Y, Morii N, Narumiya S, Takahashi N et al (1995) The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. J Cell Sci 108(Pt 6):2285–2292PubMedGoogle Scholar
  10. 10.
    Gelb MH (1997) Protein prenylation, et cetera: signal transduction in two dimensions. Science 275:1750–1751CrossRefPubMedGoogle Scholar
  11. 11.
    Hayday AC (2000) γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026CrossRefPubMedGoogle Scholar
  12. 12.
    Bonneville M, O’Brien RL, Born WK (2010) γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478CrossRefPubMedGoogle Scholar
  13. 13.
    Haas W, Pereira P, Tonegawa S (1993) Gamma/delta cells. Annu Rev Immunol 11:637–685CrossRefPubMedGoogle Scholar
  14. 14.
    Kabelitz D, Wesch D, He W (2007) Perspectives of γδ T cells in tumor immunology. Cancer Res 67:5–8CrossRefPubMedGoogle Scholar
  15. 15.
    Nakazawa T, Nakamura M, Park YS, Motoyama Y, Hironaka Y, Nishimura F, Nakagawa I, Yamada S, Matsuda R, Tamura K, Sugimoto T, Takeshima Y, Marutani A, Tsujimura T, Ouji N, Ouji Y, Yoshikawa M, Nakase H (2014) Cytotoxic human peripheral blood-derived gammadeltaT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma. J Neurooncol 116:31–39CrossRefPubMedGoogle Scholar
  16. 16.
    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182CrossRefPubMedGoogle Scholar
  17. 17.
    Tatsumi N, Oji Y, Tsuji N, Tsuda A, Higashio M, Aoyagi S, Fukuda I, Ito K, Nakamura J, Takashima S, Kitamura Y, Miyai S, Jomgeow T, Li Z, Shirakata T, Nishida S, Tsuboi A, Oka Y, Sugiyama H (2008) Wilms’ tumor gene WT1-shRNA as a potent apoptosis-inducing agent for solid tumors. Int J Oncol 32:701–711PubMedGoogle Scholar
  18. 18.
    Fukai J, Koizumi F, Nakao N (2014) Enhanced anti-tumor effect of zoledronic acid combined with temozolomide against human malignant glioma cell expressing O6-methylguanine dna methyltransferase. PloS one 9:e104538CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshino A, Ogino A, Yachi K, T. O, Fukushima T, Watanabe T, Katayama Y, Okamoto Y, Naruse N, Sano E, Tsumoto K (2010) Gene expression profiling predicts response to temozolomide in malignant gliomas. Int J Oncol 36:1367–1377CrossRefPubMedGoogle Scholar
  21. 21.
    Nathanson D, Mischel PS (2011) Charting the course across the blood–brain barrier. J Clin Invest 121:31–33CrossRefPubMedGoogle Scholar
  22. 22.
    Coomber BL, Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF (1987) Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood–brain barrier defect. J Neurooncol 5:299–307CrossRefPubMedGoogle Scholar
  23. 23.
    Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB, Meleth S, Lopez RD, Lamb LS Jr (2009) Characterization and immunotherapeutic potential of γδ T-cells in patients with glioblastoma. Neuro-Oncology 11:357–367CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Battistini L, Salvetti M, Ristori G, Falcone M, Raine CS, Brosnan CF (1995) γδ T cell receptor analysis supports a role for HSP 70 selection of lymphocytes in multiple sclerosis lesions. Mol Med 1:554–562PubMedPubMedCentralGoogle Scholar
  25. 25.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241CrossRefPubMedGoogle Scholar
  26. 26.
    Kang J, Pervaiz S (2012) Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol 2:3389Google Scholar
  27. 27.
    Tsubaki M, Itoh T, Satou T, Imano M, Komai M, Ogawa N, Mukai J, Nishida S (2013) Nitrogen-containing bisphosphonates induce apoptosis of hematopoietic tumor cells via inhibition of Ras signaling pathways and Bim-mediated activation of the intrinsic apoptotic pathway. Biochem Pharmacol 85:163–172CrossRefPubMedGoogle Scholar
  28. 28.
    Nakajima H, Magae J, Tsuruga M, Sakaguchi K, Fujiwara I, Mizuta M, Sawai K, Yamagishi H, Mizuta N (2007) Induction of mitochondria-dependent apoptosis through the inhibition of mevalonate pathway in human breast cancer cells by YM529, a new third generation bisphosphonate. Cancer Lett 253:89–96CrossRefPubMedGoogle Scholar
  29. 29.
    Kim SO, Han J (2001) Pan-caspase inhibitor zVAD enhances cell death in RAW246.7 macrophages. J Endotoxin Res 7:292–296CrossRefPubMedGoogle Scholar
  30. 30.
    Rebbaa A, Zheng X, Chou PM, Mirkin BL (2003) Caspase inhibition switches doxorubicin-induced apoptosis to senescence. Oncogene 22:2805–2811CrossRefPubMedGoogle Scholar
  31. 31.
    Kobayashi Y, Yonehara S (2009) Novel cell death by downregulation of eEF1A1 expression in tetraploids. Cell Death Differ 16:139–150CrossRefPubMedGoogle Scholar
  32. 32.
    Bryant NL, Gillespie GY, Lopez RD, Markert JM, Cloud GA, Langford CP, Arnouk H, Su Y, Haines HL, Suarez-Cuervo C, Lamb LS Jr (2011) Preclinical evaluation of ex vivo expanded/activated γδ T cells for immunotherapy of glioblastoma multiforme. J Neurooncol 101:179–188CrossRefPubMedGoogle Scholar
  33. 33.
    Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, Dieli F, Stassi G (2009) Efficient killing of human colon cancer stem cells by γδ T lymphocytes. J Immunol 182:7287–7296CrossRefPubMedGoogle Scholar
  35. 35.
    Gertner-Dardenne J, Castellano R, Mamessier E, Garbit S, Kochbati E, Etienne A, Charbonnier A, Collette Y, Vey N, Olive D (2012) Human Vgamma9Vdelta2 T cells specifically recognize and kill acute myeloid leukemic blasts. J Immunol 188:4701–4708CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tsutomu Nakazawa
    • 1
    • 3
  • Mitsutoshi Nakamura
    • 1
  • Ryosuke Matsuda
    • 1
  • Fumihiko Nishimura
    • 1
  • Young Soo Park
    • 1
  • Yasushi Motoyama
    • 1
  • Yasuo Hironaka
    • 1
  • Ichiro Nakagawa
    • 1
  • Hiroshi Yokota
    • 1
  • Shuichi Yamada
    • 1
  • Kentaro Tamura
    • 1
  • Yasuhiro Takeshima
    • 1
  • Kouji Omoto
    • 1
  • Yoshitaka Tanaka
    • 1
  • Yukiteru Ouji
    • 4
  • Masahide Yoshikawa
    • 4
  • Takahiro Tsujimura
    • 2
  • Hiroyuki Nakase
    • 1
  1. 1.Department of NeurosurgeryNara Medical University School of MedicineKashiharaJapan
  2. 2.Clinic Grandsoul NaraUdaJapan
  3. 3.Grandsoul Research Institute for Immunology, Inc.UdaJapan
  4. 4.Department of Pathogen, Infection and ImmunityNara Medical University School of MedicineKashiharaJapan

Personalised recommendations