Journal of Neuro-Oncology

, Volume 129, Issue 1, pp 33–38 | Cite as

F8-SIP mediated targeted photodynamic therapy leads to microvascular dysfunction and reduced glioma growth

  • G. Acker
  • A. Palumbo
  • D. Neri
  • P. Vajkoczy
  • M. Czabanka
Laboratory Investigation


The extra domain A (ED A) of fibronectin has been identified as a tumor vessel specific neovascular marker in glioma. Antibody based vascular targeting against ED A of fibronectin allows precise accumulation of photosensitizer in glioma microvasculature and thereby promises to overcome drawbacks of current photodynamic therapy (PDT) for glioma treatment. Our aim was to characterize microcirculatory consequences of F8-small immunoprotein (SIP) mediated PDT by intravital microscopy (IVM) and to analyze the effects on glioma growth. For IVM SF126 glioma cells were implanted into dorsal skinfold-chamber of nude mice. PDT was performed after intravenous injection of photosensitizer (PS)-coupled F8-SIP or PBS (n = 4). IVM was performed before and after PDT for 4 days. Analysis included total and functional (TVD, FVD) vessel densities, perfusion index (PI), microvascular permeability and blood flow rate (Q). To assess tumor growth SF126 glioma cells were implanted subcutaneously. PDT was performed as a single and repetitive treatment after PS-F8-SIP injection (n = 5). Subcutaneous tumors were treated after uncoupled F8-SIP injection as control group (n = 5). PDT induced microvascular stasis and thrombosis with reduced FVD (24 h: 115.98 ± 0.7 vs. 200.8 ± 61.9 cm/cm2) and PI (39 ± 11 vs. 70 ± 10 %), whereas TVD was not altered (298 ± 39.2 vs. 278.2 ± 51 cm/cm2). Microvascular dysfunction recovered 4 days after treatment. Microvascular dysfunction led to a temporary reduction of glioma growth in the first 48 h after treatment with complete recovery 5 days after treatment. Repetitive PDT resulted in sustained reduction of tumor growth. F8-SIP mediated PDT leads to microvascular dysfunction and reduced glioma growth in a preclinical glioma model with recovery of microcirculation 4 days after treatment. Repetitive application of PDT overcomes microvascular recovery and leads to prolonged antiglioma effects.


Vascular targeting PDT F8-SIP Intravital microscopy 



This study was funded by the Immuno-PDT consortium and the Berliner Krebsgesellschaft e.V.

Compliance with ethical standards

Conflict of interest

H.D.M. was a senior director at Bayer Schering Pharma and owns few regular stocks from an employee stock purchase plan since February 2008. Dario Neri is a co-founder and shareholder of Philogen, the biotech company which has inlicensed the F8 antibody from ETH Zurich. The remaining authors declare no competing conflicts of interest.


  1. 1.
    Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N (2014) Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Photodiagn Photodyn Ther 11(3):319–330. doi: 10.1016/j.pdpdt.2014.04.004 CrossRefGoogle Scholar
  2. 2.
    Tzerkovsky DA, Osharin VV, Istomin YP, Alexandrova EN, Vozmitel MA (2014) Fluorescent diagnosis and photodynamic therapy for C6 glioma in combination with antiangiogenic therapy in subcutaneous and intracranial tumor models. Exp oncol 36(2):85–89PubMedGoogle Scholar
  3. 3.
    Zhan Q, Yue W, Shaoshan H (2011) The inhibitory effect of photodynamic therapy and of an anti-VCAM-1 monoclonal antibody on the in vivo growth of C6 glioma xenografts. Braz J Med Biol Res 44(5):489–490. doi: 10.1590/S0100-879X2011007500052 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang X, Guo M, Shen L, Hu S (2014) Combination of photodynamic therapy and temozolomide on glioma in a rat C6 glioma model. Photodiagn Photodyn Ther 11(4):603–612. doi: 10.1016/j.pdpdt.2014.10.007 CrossRefGoogle Scholar
  5. 5.
    Casi G, Neri D (2012) Antibody-drug conjugates: basic concepts, examples and future perspectives. J Control Release 161(2):422–428CrossRefPubMedGoogle Scholar
  6. 6.
    Rybak J-N, Roesli C, Kaspar M, Villa A, Neri D (2007) The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res 67(22):10948–10957CrossRefPubMedGoogle Scholar
  7. 7.
    Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak J-N, Rösli C, Borsi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Inte J cancer 122(11):2405–2413CrossRefGoogle Scholar
  8. 8.
    Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143(4):1055–1062PubMedPubMedCentralGoogle Scholar
  9. 9.
    Palumbo A, Hauler F, Dziunycz P, Schwager K, Soltermann A, Pretto F, Alonso C, Hofbauer GF, Boyle RW, Neri D (2011) A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels. Br J Cancer 104(7):1106–1115CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Czabanka M, Vinci M, Heppner F, Ullrich A, Vajkoczy P (2009) Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy. Int J Cancer 124(6):1293–1300CrossRefPubMedGoogle Scholar
  11. 11.
    Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD (1998) Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cerebral Blood Flow Metab 18(5):510–520CrossRefGoogle Scholar
  12. 12.
    Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39(5):386–393. doi: 10.1002/lsm.20507 CrossRefPubMedGoogle Scholar
  13. 13.
    Muragaki Y, Akimoto J, Maruyama T, Iseki H, Ikuta S, Nitta M, Maebayashi K, Saito T, Okada Y, Kaneko S, Matsumura A, Kuroiwa T, Karasawa K, Nakazato Y, Kayama T (2013) Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg 119(4):845–852. doi: 10.3171/2013.7.JNS13415 CrossRefPubMedGoogle Scholar
  14. 14.
    Bhuvaneswari R, Yuen GY, Chee SK, Olivo M (2011) Antiangiogenesis agents avastin and erbitux enhance the efficacy of photodynamic therapy in a murine bladder tumor model. Lasers Surg Med 43(7):651–662. doi: 10.1002/lsm.21109 CrossRefPubMedGoogle Scholar
  15. 15.
    Chen B, Pogue BW, Hoopes PJ, Hasan T (2005) Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int J Radiat Oncol Biol Phys 61(4):1216–1226. doi: 10.1016/j.ijrobp.2004.08.006 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen B, Pogue BW, Hoopes PJ, Hasan T (2006) Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr 16(4):279–305CrossRefPubMedGoogle Scholar
  17. 17.
    Lawrence JE, Steele CJ, Rovin RA, Belton RJ Jr, Winn RJ (2015) Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells. J Neurooncol. doi: 10.1007/s11060-015-2012-x Google Scholar
  18. 18.
    Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ (2000) Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res 60(15):4066–4069PubMedGoogle Scholar
  19. 19.
    Yi W, Xu HT, Tian DF, Wu LQ, Zhang SQ, Wang L, Ji BW, Zhu XN, Okechi H, Liu G, Chen QX (2015) Photodynamic therapy mediated by 5-aminolevulinic acid suppresses gliomas growth by decreasing the microvessels. J Huazhong Univ Sci Technol Med Sci 35(2):259–264. doi: 10.1007/s11596-015-1421-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Rybak J-N, Trachsel E, Scheuermann J, Neri D (2007) Ligand-based vascular targeting of disease. ChemMedChem 2(1):22–40CrossRefPubMedGoogle Scholar
  21. 21.
    Czabanka M, Parmaksiz G, Bayerl SH, Nieminen M, Trachsel E, Menssen HD, Erber R, Neri D, Vajkoczy P (2011) Microvascular biodistribution of L19-SIP in angiogenesis targeting strategies. Eur J Cancer 47(8):1276–1284CrossRefPubMedGoogle Scholar
  22. 22.
    Gallagher-Colombo SM, Maas AL, Yuan M, Busch TM (2012) Photodynamic therapy-induced angiogenic signaling: consequences and solutions to improve therapeutic response. Isr J Chem 52(8–9):681–690. doi: 10.1002/ijch.201200011 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Muller PJ, Wilson BC (1986) An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo. Phys Med Biol 31(11):1295–1297CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. Acker
    • 1
  • A. Palumbo
    • 2
  • D. Neri
    • 2
  • P. Vajkoczy
    • 1
  • M. Czabanka
    • 1
  1. 1.Department of NeurosurgeryCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETHZurichSwitzerland

Personalised recommendations