Skip to main content
Log in

Expression and prognostic value of the WEE1 kinase in gliomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

High-grade gliomas have an aggressive clinical course and new clinical biomarkers and therapeutic targets are highly needed. WEE1 is a regulator of the G2 checkpoint in glioblastoma (GBM) cells. Inhibition of this kinase has, in experimental glioma studies, been suggested to enhance sensitivity to irradiation and temozolomide. However, expression level and prognostic potential of WEE1 protein in gliomas remain uninvestigated. In this study, glioma samples from 235 patients across all four WHO grades were analyzed by immunohistochemistry. Using image analysis, we calculated the area fraction of WEE1 positive nuclei. We found that WEE1 protein was localized in tumor cell nuclei and expressed in all glioma types and grades. Although WEE1 protein levels are higher in GBMs (mean 24.5 %) relative to grade III (mean 14,0 %, p < 0.05) and grade II (mean 6.8 %, p < 0.001) gliomas, high WEE1 protein was associated with better survival in GBMs (p = 0.002). This was confirmed in multivariate analysis (HR 0.60, p = 0.003) even when adjusted for MGMT status (HR 0.60, p = 0.005). In conclusion, we report a nuclear expression of WEE1 protein in all glioma grades and types. The WEE1 positive nuclear area was correlated with malignancy grade but it was inversely associated with prognosis in GBM. Although WEE1 is a frequently occurring protein and has been proposed as a novel target in GBM, the role of WEE1 in glioma patient survival appears to be connected to the MGMT status and is more complex than previously anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2007) WHO classification of tumours of the central nervous system, 4th edn. International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  2. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  3. Kesari S (2011) Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments. Semin Oncol 38:S2–S10

    Article  PubMed  Google Scholar 

  4. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  5. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  6. De Witt Hamer PC, Mir SE, Noske D et al (2011) WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 17:4200–4207

    Article  PubMed  Google Scholar 

  7. Mir SE, De Witt Hamer PC, Krawczyk PM et al (2010) In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18:244–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Li J, Booher RN et al (2001) Radiosensitization of p53 Mutant Cells by PD0166285, a Novel G2 Checkpoint Abrogator. Cancer Res 61:8211–8217

    CAS  PubMed  Google Scholar 

  9. Iorns E, Lord CJ, Grigoriadis A et al (2009) Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS One 4:e5120

    Article  PubMed  PubMed Central  Google Scholar 

  10. Masaki T, Shiratori Y, Rengifo W et al (2003) Cyclins and cyclin-dependent kinases: comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology 37:534–543

    Article  CAS  PubMed  Google Scholar 

  11. Blenk S, Engelmann JC, Pinkert MWS et al (2008) Explorative data analysis of MCL reveals gene expression networks implicated in survival and prognosis supported by explorative CGH analysis. BMC Cancer 8:106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dahlrot RH, Kristensen BW, Hjelmborg J et al (2013) A population-based study of high-grade gliomas and mutated isocitrate dehydrogenase 1. Int J Clin Exp Pathol 6:31–40

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dahlrot RH, Kristensen BW, Hjelmborg J et al (2013) A population-based study of low-grade gliomas and mutated isocitrate dehydrogenase 1 (IDH1). J Neurooncol 114:309–317

    Article  CAS  PubMed  Google Scholar 

  14. Hermansen SK, Dahlrot RH, Nielsen BS et al (2013) MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neurooncol 111(1):71–81

    Article  CAS  PubMed  Google Scholar 

  15. Dahlrot RH, Hansen S, Herrstedt J et al (2013) Prognostic value of Musashi-1 in gliomas. J Neurooncol 115:453–461

    Article  CAS  PubMed  Google Scholar 

  16. Lathia JD, Li M, Sinyuk M (2014) High-throughput flow cytometry screening reveals a role for junctional adhesion molecule a as a cancer stem cell maintenance factor. Cell Rep 6(1):117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dahlrot RH, Hansen S, Jensen SS et al (2014) Clinical value of CD133 and nestin in patients with glioma: a population-based study. Int J Clin Exp Pathol 7(7):3739–3751

    PubMed  PubMed Central  Google Scholar 

  18. PosthumaDeBoer J, Wurdinger T, Graat H et al (2011) WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer 11:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mueller S, Hashizume R, Yang X et al (2013) Targeting Wee1 for the treatment of pediatric high-grade gliomas. Neuro-Oncology 16(3):352–360

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harris PS, Venkataraman S, Alimova I et al (2014) Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol Cancer 13:1–14

    Article  Google Scholar 

  21. Hong KS, Kim HS, Kim SH et al (2011) Hypoxia induces WEE1 expression and attenuates hydrogen peroxide-induced endothelial damage in MS1 cells. Exp Mol Med 43:653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida T, Tanaka S, Mogi A et al (2004) The clinical significance of cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 15:252–256

    Article  CAS  PubMed  Google Scholar 

  23. Guertin AD, Li J, Liu Y et al (2013) Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol Cancer Ther 12:1442–1452

    Article  CAS  PubMed  Google Scholar 

  24. Kreahling JM, Gemmer JY, Reed D et al (2011) MK1775, a selective Wee1 inhibitor, shows single-agent antitumor activity against sarcoma cells. Mol Cancer Ther 11(1):174–182

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sarcar B, Kahali S, Prabhu AH et al (2011) Targeting radiation-induced G2 checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines. Mol Cancer Ther 10(12):2405–2414

    Article  CAS  PubMed  Google Scholar 

  26. Cancer Incidence by Age. Cancer Research UK. http://www.cancerresearchuk.org/cancer-info/cancerstats/incidence/age/. Accessed 26 Nov 2014

  27. Do Cancer Rates Differ with Age? Australian Institute of Health and Welfare http://www.aihw.gov.au/cancer/. Accessed 26 Nov 2014

  28. Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  CAS  PubMed  Google Scholar 

  29. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    Article  CAS  PubMed  Google Scholar 

  30. Simon M, Hosen I, Gousias K et al (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro-Oncology 17:45–52

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the excellent laboratory work performed by technicians Helle Wohlleben and Tanja Dreehsen Højgaard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarne Winther Kristensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Music, D., Dahlrot, R.H., Hermansen, S.K. et al. Expression and prognostic value of the WEE1 kinase in gliomas. J Neurooncol 127, 381–389 (2016). https://doi.org/10.1007/s11060-015-2050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-2050-4

Keywords

Navigation