Skip to main content

Advertisement

Log in

Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Myeloid derived suppressor cells (MDSCs) are bone marrow derived cells with immunosuppressive properties. We have shown previously that MDSCs numbers are elevated in the circulation of GBM patients and that they produce reversible T cell dysfunction. Here, we evaluated whether MDSCs infiltrate human GBM tissues, and whether a commonly used mouse model of GBM reproduces the biology of MDSCs that is observed in patients. We evaluated tumor specimens from patients with newly diagnosed GBM. We harvested and evaluated normal brain, tumors and hematopoietic tissues from control, vehicle and sunitinib-treated mice. In human GBM tumors, MDSCs represented 5.4 ± 1.8 % of total cells. The majority of MDSCs (CD33+HLADR−) were lineage negative (CD14−CD15−), followed by granulocytic (CD15+CD14−) and monocytic (CD15−CD14+) subtypes. In murine GBM tumors, MDSCs were 8.06 ± 0.78 % of total cells, of which more were monocytic (M-MDSC, CD11b+ Gr1-low) than granulocytic (G-MDSC, CD11b+ Gr1-high). Treatment with the tyrosine kinase inhibitor sunitinib decreased the infiltration of both granulocytic and monocytic MDSCs in murine GBM tumors. In the hematopoietic tissues, circulating G-MDSC blood levels were reduced after sunitinib treatment. In tumors, both CD3+ and CD4+ T cell counts increased following sunitinib treatment (p ≤ 0.001). Total T cell proliferation (p < 0.001) and interferon gamma production (p = 0.004) were increased in the spleens of sunitinib treated mice. Sunitinib-treated mice survived longer than vehicle-treated mice (p = 0.002). MDSCs are present in both human and mouse GBM tumors. Sunitinib may have an immunostimulatory effect, as its use is associated with a reduction in G-MDSCs and improvement in anti-tumor immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    Article  CAS  PubMed  Google Scholar 

  3. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bingisser RM, Tilbrook PA, Holt PG, Kees UR (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160(12):5729–5734

    CAS  PubMed  Google Scholar 

  5. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244

    Article  CAS  PubMed  Google Scholar 

  6. Nagaraj S, Gabrilovich DI (2007) Myeloid-derived suppressor cells. Adv Exp Med Biol 601:213–223

    Article  PubMed  Google Scholar 

  7. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333

    Article  CAS  PubMed  Google Scholar 

  8. Wainwright DA, Nigam P, Thaci B, Dey M, Lesniak MS (2012) Recent developments on immunotherapy for brain cancer. Expert Opin Emerg Drugs 17(2):181–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ashman LK, Griffith R (2013) Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs 22(1):103–115

    Article  CAS  PubMed  Google Scholar 

  11. Cohen PA, Ko JS, Storkus WJ, Spencer CD, Bradley JM, Gorman JE, McCurry DB, Zorro-Manrique S, Dominguez AL, Pathangey LB, Rayman PA, Rini BI, Gendler SJ, Finke JH (2012) Myeloid-derived suppressor cells adhere to physiologic STAT3- vs STAT5-dependent hematopoietic programming, establishing diverse tumor-mediated mechanisms of immunologic escape. Immunol Invest 41(6–7):680–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70(9):3526–3536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157

    Article  CAS  PubMed  Google Scholar 

  14. Gan HK, Seruga B, Knox JJ (2009) Sunitinib in solid tumors. Expert Opin Investig Drugs 18(6):821–834

    Article  CAS  PubMed  Google Scholar 

  15. Abe F, Younos I, Westphal S, Samson H, Scholar E, Dafferner A, Hoke TA, Talmadge JE (2010) Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice. Int Immunopharmacol 10(1):140–145

    Article  CAS  PubMed  Google Scholar 

  16. Hambardzumyan D, Parada LF, Holland EC, Charest A (2011) Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia 59(8):1155–1168

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ko JS, Bukowski RM, Fincke JH (2009) Myeloid-derived suppressor cells: a novel therapeutic target. Curr Oncol Rep 11(2):87–93

    Article  CAS  PubMed  Google Scholar 

  18. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190(7):3783–3797

    Article  CAS  PubMed  Google Scholar 

  19. Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH, Amankulor N, Fujita M, Ohlfest JR, Okada H (2013) Granulocyte macrophage-colony stimulation factor promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-alpha. Cancer Res 72:6413–6423

    Article  Google Scholar 

  20. Dalton JE, Maroof A, Owens BM, Narang P, Johnson K, Brown N, Rosenquist L, Beattie L, Coles M, Kaye PM (2010) Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest 120(4):1204–1216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69(6):2514–2522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Murdoch C, Muthana M, Coffelt SB, Lewis SE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008(8):618–631

    Article  Google Scholar 

  23. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69(6):2506–2513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 236(5):567–579

    Article  CAS  Google Scholar 

  25. Kreisl TN, Smith P, Sul J, Salgado C, Iwamoto FM, Shih JH, Fine HA (2013) Continuous daily sunitinib for recurrent glioblastoma. J Neurooncol 111(1):41–48

    Article  CAS  PubMed  Google Scholar 

  26. Pan E, Yu D, Yue B, Potthast L, Chowdhary S, Smith P, Chamberlain M (2012) A prospective phase II single-institution trial of sunitinib for recurrent malignant glioma. J Neurooncol 110(1):111–118

    Article  CAS  PubMed  Google Scholar 

  27. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337

    CAS  PubMed  Google Scholar 

  28. Bose A, Taylor JL, Alber S, Watkins SC, Garcia JA, Rini BI, Ko JS, Cohen PA, Finke JH, Storkus WJ (2010) Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int J Cancer 129(9):2158–2170

    Article  Google Scholar 

  29. Verschuere T, Toelen J, Maes W, Poirier F, Boon L, Tousseyn T, Mathivet T, Gerhardt H, Mathieu V, Kiss R, Lefranc F, Van Gool SW, De Vleeschouwer S (2014) Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 134(4):873–874

    Article  CAS  PubMed  Google Scholar 

  30. Abad C, Nobuta H, Li J, Kasai A, Yong WH, Waschek JA (2014) Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol 95(2):357–367

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly funded by a grant from Al Musella Foundation (MUSE0211BR). The authors want to acknowledge the technical assistance of Shannon Donnola for MRI Imaging. Work supported by Al Mussella Foundation, Wolf Family Foundation and NIH R01 CA150959.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Vogelbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raychaudhuri, B., Rayman, P., Huang, P. et al. Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neurooncol 122, 293–301 (2015). https://doi.org/10.1007/s11060-015-1720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1720-6

Keywords

Navigation