Advertisement

Journal of Neuro-Oncology

, Volume 118, Issue 2, pp 257–269 | Cite as

Exogenous endothelin-1 induces cell migration and matrix metalloproteinase expression in U251 human glioblastoma multiforme

  • Wen-Tsong Hsieh
  • Wei-Lan Yeh
  • Ruo-Yuo Cheng
  • Chingju Lin
  • Cheng-Fang Tsai
  • Bor-Ren Huang
  • Caren Yu-Ju Wu
  • Hsiao-Yun Lin
  • Shiang-Suo Huang
  • Dah-Yuu Lu
Laboratory Investigation

Abstract

Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor characterized by its rapid infiltration to surrounding tissues during the early stages. The fast spreading of GBM obscures the initiation of the tumor mass making the treatment outcome undesirable. Endothelin-1 is known as a secretory protein presented in various types of brain cells, which has been indicated as a factor for cancer pathology. The aim of the present study was to investigate the molecular mechanism of cell migration in GBM. We found that various malignant glioma cells expressed higher amounts of endothelin-1, ETA, and ETB receptors than nonmalignant human astrocytes. The application of endothelin-1 enhanced the migratory activity in human U251 glioma cells corresponding to increased expression of matrix metalloproteinase (MMP)-9 and MMP-13. The endothelin-1-induced cell migration was attenuated by MMP-9 and MMP-13 inhibitors and inhibitors of mitogen-activated protein (MAP) kinase and PI3 kinase/Akt. Furthermore, the elevated levels of phosphate c-Jun accumulation in the nucleus and activator protein-1 (AP-1)-DNA binding activity were also found in endothelin-1 treated glioma cells. In migration-prone sublines, cells with greater migration ability showed higher endothelin-1, ETB receptor, and MMP expressions. These results indicate that endothelin-1 activates MAP kinase and AP-1 signaling, resulting in enhanced MMP-9 and MMP-13 expressions and cell migration in GBM.

Keywords

Endothelin-1 Migration MMP Glioblastoma multiforme AP-1 

Notes

Acknowledgements

This work was supported by grants from the National Science Council (NSC 102-2320-B-039-026-MY3, 102-2320-B-039-051-MY3 and 101-2320-B-039-048-MY2), China Medical University (CMU 102-S-21 and CMU 102-AWARD-02), ASIA University (98-ASIA-07-2), and Taichung Tzu Chi General Hospital (TTCRD 101-03). The authors thank Dr. Wei-Hwa Lee (Tri-service General Hospital, Taipei, Taiwan) for kindly provided GBM 8901 cells.

Conflict of interest

The authors report no biomedical financial interests or potential conflicts of interest.

Supplementary material

11060_2014_1442_MOESM1_ESM.doc (618 kb)
Supplementary material 1 (DOC 618 kb)

References

  1. 1.
    Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC (1995) Histopathology, classification, and grading of gliomas. Glia 15:211–221. doi: 10.1002/glia.440150303 PubMedCrossRefGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi: 10.1056/NEJMoa043330 PubMedCrossRefGoogle Scholar
  3. 3.
    Koul D, Shen R, Bergh S, Sheng X, Shishodia S, Lafortune TA, Lu Y, de Groot JF, Mills GB, Yung WK (2006) Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol Cancer Ther 5:637–644. doi: 10.1158/1535-7163.MCT-05-0453 PubMedCrossRefGoogle Scholar
  4. 4.
    Stjernquist M (1998) Endothelins–vasoactive peptides and growth factors. Cell Tissue Res 292:1–9PubMedCrossRefGoogle Scholar
  5. 5.
    Stanimirovic DB, Yamamoto T, Uematsu S, Spatz M (1994) Endothelin-1 receptor binding and cellular signal transduction in cultured human brain endothelial cells. J Neurochem 62:592–601PubMedCrossRefGoogle Scholar
  6. 6.
    Hughes PM, Anthony DC, Ruddin M, Botham MS, Rankine EL, Sablone M, Baumann D, Mir AK, Perry VH (2003) Focal lesions in the rat central nervous system induced by endothelin-1. J Neuropathol Exp Neurol 62:1276–1286PubMedGoogle Scholar
  7. 7.
    Kurihara Y, Kurihara H, Morita H, Cao WH, Ling GY, Kumada M, Kimura S, Nagai R, Yazaki Y, Kuwaki T (2000) Role of endothelin-1 in stress response in the central nervous system. Am J Physiol Regul Integr Comp Physiol 279:R515–R521PubMedGoogle Scholar
  8. 8.
    Hung VK, Chen SM, Tai LW, Chen AY, Chung SK, Cheung CW (2012) Over-expression of endothelin-1 in astrocytes, but not endothelial cells, ameliorates inflammatory pain response after formalin injection. Life Sci. doi: 10.1016/j.lfs.2012.06.038 PubMedGoogle Scholar
  9. 9.
    Ostrow LW, Suchyna TM, Sachs F (2011) Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs). Biochem Biophys Res Commun 410:81–86. doi: 10.1016/j.bbrc.2011.05.109 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chauhan A, Hahn S, Gartner S, Pardo CA, Netesan SK, McArthur J, Nath A (2007) Molecular programming of endothelin-1 in HIV-infected brain: role of Tat in up-regulation of ET-1 and its inhibition by statins. FASEB J 21:777–789. doi: 10.1096/fj.06-7054com PubMedCrossRefGoogle Scholar
  11. 11.
    Didier N, Banks WA, Creminon C, Dereuddre-Bosquet N, Mabondzo A (2002) HIV-1-induced production of endothelin-1 in an in vitro model of the human blood-brain barrier. NeuroReport 13:1179–1183PubMedCrossRefGoogle Scholar
  12. 12.
    Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y (2011) Mild hypothermia causes differential, time-dependent changes in cytokine expression and gliosis following endothelin-1-induced transient focal cerebral ischemia. J Neuroinflammation 8:60. doi: 10.1186/1742-2094-8-60 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gadea A, Schinelli S, Gallo V (2008) Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 28:2394–2408. doi: 10.1523/JNEUROSCI.5652-07.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Nelson J, Bagnato A, Battistini B, Nisen P (2003) The endothelin axis: emerging role in cancer. Nat Rev Cancer 3:110–116. doi: 10.1038/nrc990 PubMedCrossRefGoogle Scholar
  15. 15.
    Bagnato A, Spinella F, Rosano L (2008) The endothelin axis in cancer: the promise and the challenges of molecularly targeted therapy. Can J Physiol Pharmacol 86:473–484. doi: 10.1139/Y08-058 PubMedCrossRefGoogle Scholar
  16. 16.
    Grimshaw MJ (2005) Endothelins in breast tumour cell invasion. Cancer Lett 222:129–138. doi: 10.1016/j.canlet.2004.08.029 PubMedCrossRefGoogle Scholar
  17. 17.
    Sapira V, Cojocaru IM, Lilios G, Grigorian M, Cojocaru M (2010) Study of endothelin-1 in acute ischemic stroke. Rom J Intern Med 48:329–332PubMedGoogle Scholar
  18. 18.
    Giannopoulos S, Kosmidou M, Hatzitolios AI, Savopoulos CG, Ziakas A, Karamouzis M (2008) Measurements of endothelin-1, C-reactive protein and fibrinogen plasma levels in patients with acute ischemic stroke. Neurol Res 30:727–730. doi: 10.1179/174313208X297904 PubMedCrossRefGoogle Scholar
  19. 19.
    Palmer JC, Barker R, Kehoe PG, Love S (2012) Endothelin-1 is elevated in Alzheimer’s disease and upregulated by amyloid-beta. J Alzheimers Dis 29:853–861. doi: 10.3233/JAD-2012-111760 PubMedGoogle Scholar
  20. 20.
    Luo J, Grammas P (2010) Endothelin-1 is elevated in Alzheimer’s disease brain microvessels and is neuroprotective. J Alzheimers Dis 21:887–896. doi: 10.3233/JAD-2010-091486 PubMedGoogle Scholar
  21. 21.
    Wang HH, Hsieh HL, Wu CY, Yang CM (2010) Endothelin-1 enhances cell migration via matrix metalloproteinase-9 up-regulation in brain astrocytes. J Neurochem 113:1133–1149. doi: 10.1111/j.1471-4159.2010.06680.x PubMedGoogle Scholar
  22. 22.
    Gadea A, Aguirre A, Haydar TF, Gallo V (2009) Endothelin-1 regulates oligodendrocyte development. J Neurosci 29:10047–10062. doi: 10.1523/JNEUROSCI.0822-09.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Milan J, Charalambous C, Elhag R, Chen TC, Li W, Guan S, Hofman FM, Zidovetzki R (2006) Multiple signaling pathways are involved in endothelin-1-induced brain endothelial cell migration. Am J Physiol Cell Physiol 291:C155–C164. doi: 10.1152/ajpcell.00239.2005 PubMedCrossRefGoogle Scholar
  24. 24.
    Knowles JP, Shi-Wen X, Haque SU, Bhalla A, Dashwood MR, Yang S, Taylor I, Winslet MC, Abraham DJ, Loizidou M (2012) Endothelin-1 stimulates colon cancer adjacent fibroblasts. Int J Cancer 130:1264–1272. doi: 10.1002/ijc.26090 PubMedCrossRefGoogle Scholar
  25. 25.
    Said N, Smith S, Sanchez-Carbayo M, Theodorescu D (2011) Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J Clin Investig 121:132–147. doi: 10.1172/JCI42912 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wu MH, Lo JF, Kuo CH, Lin JA, Lin YM, Chen LM, Tsai FJ, Tsai CH, Huang CY, Tang CH (2012) Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 227:3016–3026. doi: 10.1002/jcp.23043 PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao Y, Liao Q, Zhu Y, Long H (2011) Endothelin-1 promotes osteosarcoma cell invasion and survival against cisplatin-induced apoptosis. Clin Orthop Relat Res 469:3190–3199. doi: 10.1007/s11999-011-1939-2 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ala-aho R, Kahari VM (2005) Collagenases in cancer. Biochimie 87:273–286. doi: 10.1016/j.biochi.2004.12.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835. doi: 10.1038/sj.bjc.6690291 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Nakada M, Okada Y, Yamashita J (2003) The role of matrix metalloproteinases in glioma invasion. Front Biosci 8:e261–e269PubMedCrossRefGoogle Scholar
  31. 31.
    Raithatha SA, Muzik H, Muzik H, Rewcastle NB, Johnston RN, Edwards DR, Forsyth PA (2000) Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro Oncol 2:145–150PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hormigo A, Gu B, Karimi S, Riedel E, Panageas KS, Edgar MA, Tanwar MK, Rao JS, Fleisher M, DeAngelis LM, Holland EC (2006) YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin Cancer Res 12:5698–5704. doi: 10.1158/1078-0432.CCR-06-0181 PubMedCrossRefGoogle Scholar
  33. 33.
    Wang J, Li Y, Wang J, Li C, Yu K, Wang Q (2012) Increased expression of matrix metalloproteinase-13 in glioma is associated with poor overall survival of patients. Med Oncol. doi: 10.1007/s12032-012-0181-4 PubMedCentralGoogle Scholar
  34. 34.
    Lu DY, Leung YM, Cheung CW, Chen YR, Wong KL (2010) Glial cell line-derived neurotrophic factor induces cell migration and matrix metalloproteinase-13 expression in glioma cells. Biochem Pharmacol 80:1201–1209. doi: 10.1016/j.bcp.2010.06.046 PubMedCrossRefGoogle Scholar
  35. 35.
    Yeh WL, Lu DY, Lee MJ, Fu WM (2009) Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia 57:454–464. doi: 10.1002/glia.20773 PubMedCrossRefGoogle Scholar
  36. 36.
    Lu DY, Chang CS, Yeh WL, Tang CH, Cheung CW, Leung YM, Liu JF, Wong KL (2012) The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine 19:1093–1100. doi: 10.1016/j.phymed.2012.06.010 PubMedCrossRefGoogle Scholar
  37. 37.
    Hsu HH, Liu CJ, Shen CY, Chen YJ, Chen LM, Kuo WH, Lin YM, Chen RJ, Tsai CH, Tsai FJ, Huang CY (2012) p38alpha MAPK mediates 17beta-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells. J Cell Physiol 227:3648–3660. doi: 10.1002/jcp.24072 PubMedCrossRefGoogle Scholar
  38. 38.
    Lu DY, Yeh WL, Huang SM, Tang CH, Lin HY, Chou SJ (2012) Osteopontin increases heme oxygenase-1 expression and subsequently induces cell migration and invasion in glioma cells. Neuro Oncol 14:1367–1378. doi: 10.1093/neuonc/nos262 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Chen JH, Huang SM, Tan TW, Lin HY, Chen PY, Yeh WL, Chou SC, Tsai CF, Wei IH, Lu DY (2012) Berberine induces heme oxygenase-1 up-regulation through phosphatidylinositol 3-kinase/AKT and NF-E2-related factor-2 signaling pathway in astrocytes. Int Immunopharmacol 12:94–100. doi: 10.1016/j.intimp.2011.10.019 PubMedCrossRefGoogle Scholar
  40. 40.
    Huang SM, Cheung CW, Chang CS, Tang CH, Liu JF, Lin YH, Chen JH, Ko SH, Wong KL, Lu DY (2011) Phloroglucinol derivative MCPP induces cell apoptosis in human colon cancer. J Cell Biochem 112:643–652. doi: 10.1002/jcb.22966 PubMedCrossRefGoogle Scholar
  41. 41.
    Chen P, Shibata M, Zidovetzki R, Fisher M, Zlokovic BV, Hofman FM (2001) Endothelin-1 and monocyte chemoattractant protein-1 modulation in ischemia and human brain-derived endothelial cell cultures. J Neuroimmunol 116:62–73PubMedCrossRefGoogle Scholar
  42. 42.
    Hasselblatt M, Lewczuk P, Loffler BM, Kamrowski-Kruck H, von Ahsen N, Siren AL, Ehrenreich H (2001) Role of the astrocytic ET(B) receptor in the regulation of extracellular endothelin-1 during hypoxia. Glia 34:18–26PubMedCrossRefGoogle Scholar
  43. 43.
    Spinella F, Rosano L, Di Castro V, Natali PG, Bagnato A (2004) Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. J Biol Chem 279:46700–46705. doi: 10.1074/jbc.M408584200 PubMedCrossRefGoogle Scholar
  44. 44.
    Spinella F, Caprara V, Di Castro V, Rosano L, Cianfrocca R, Natali PG, Bagnato A (2013) Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. J Mol Med (Berl) 91:395–405. doi: 10.1007/s00109-012-0956-2 CrossRefGoogle Scholar
  45. 45.
    Plata-Salaman CR (1991) Epidermal growth factor and the nervous system. Peptides 12:653–663PubMedCrossRefGoogle Scholar
  46. 46.
    Trojan J, Cloix JF, Ardourel MY, Chatel M, Anthony DD (2007) Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 145:795–811. doi: 10.1016/j.neuroscience.2007.01.021 PubMedCrossRefGoogle Scholar
  47. 47.
    Merrill MJ, Oldfield EH (2005) A reassessment of vascular endothelial growth factor in central nervous system pathology. J Neurosurg 103:853–868. doi: 10.3171/jns.2005.103.5.0853 PubMedCrossRefGoogle Scholar
  48. 48.
    Dawson LA, Maitland NJ, Berry P, Turner AJ, Usmani BA (2006) Expression and localization of endothelin-converting enzyme-1 in human prostate cancer. Exp Biol Med (Maywood) 231:1106–1110Google Scholar
  49. 49.
    Bagnato A, Rosano L (2008) The endothelin axis in cancer. Int J Biochem Cell Biol 40:1443–1451. doi: 10.1016/j.biocel.2008.01.022 PubMedCrossRefGoogle Scholar
  50. 50.
    Montgomery JP, Patterson PH (2008) Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor. BMC Cancer 8:354. doi: 10.1186/1471-2407-8-354 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Awano S, Dawson LA, Hunter AR, Turner AJ, Usmani BA (2006) Endothelin system in oral squamous carcinoma cells: specific siRNA targeting of ECE-1 blocks cell proliferation. Int J Cancer 118:1645–1652. doi: 10.1002/ijc.21525 PubMedCrossRefGoogle Scholar
  52. 52.
    Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415PubMedGoogle Scholar
  53. 53.
    Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732. doi: 10.1038/348730a0 PubMedCrossRefGoogle Scholar
  54. 54.
    Khodorova A, Montmayeur JP, Strichartz G (2009) Endothelin receptors and pain. J Pain 10:4–28. doi: 10.1016/j.jpain.2008.09.009 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    de Lagausie P, de Buys-Roessingh A, Ferkdadji L, Saada J, Aisenfisz S, Martinez-Vinson C, Fund X, Cayuela JM, Peuchmaur M, Mercier JC, Berrebi D (2005) Endothelin receptor expression in human lungs of newborns with congenital diaphragmatic hernia. J Pathol 205:112–118. doi: 10.1002/path.1677 PubMedCrossRefGoogle Scholar
  56. 56.
    Lund AK, Lucero J, Lucas S, Madden MC, McDonald JD, Seagrave JC, Knuckles TL, Campen MJ (2009) Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1-mediated pathways. Arterioscler Thromb Vasc Biol 29:511–517. doi: 10.1161/ATVBAHA.108.176107 PubMedCrossRefGoogle Scholar
  57. 57.
    Rogers SD, Peters CM, Pomonis JD, Hagiwara H, Ghilardi JR, Mantyh PW (2003) Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia 41:180–190. doi: 10.1002/glia.10173 PubMedCrossRefGoogle Scholar
  58. 58.
    Wang HH, Hsieh HL, Yang CM (2011) Nitric oxide production by endothelin-1 enhances astrocytic migration via the tyrosine nitration of matrix metalloproteinase-9. J Cell Physiol 226:2244–2256. doi: 10.1002/jcp.22560 PubMedCrossRefGoogle Scholar
  59. 59.
    Kawanabe Y, Nauli SM (2011) Endothelin. Cell Mol Life Sci 68:195–203. doi: 10.1007/s00018-010-0518-0 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4:82–89PubMedCrossRefGoogle Scholar
  61. 61.
    Marasciulo FL, Montagnani M, Potenza MA (2006) Endothelin-1: the yin and yang on vascular function. Curr Med Chem 13:1655–1665PubMedCrossRefGoogle Scholar
  62. 62.
    Jung SH, Woo MS, Kim SY, Kim WK, Hyun JW, Kim EJ, Kim DH, Kim HS (2006) Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int J Cancer 118:490–497. doi: 10.1002/ijc.21356 PubMedCrossRefGoogle Scholar
  63. 63.
    Woo MS, Jung SH, Kim SY, Hyun JW, Ko KH, Kim WK, Kim HS (2005) Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun 335:1017–1025. doi: 10.1016/j.bbrc.2005.07.174 PubMedCrossRefGoogle Scholar
  64. 64.
    Hsieh HL, Lin CC, Chan HJ, Yang CM, Yang CM (2012) c-Src-dependent EGF receptor transactivation contributes to ET-1-induced COX-2 expression in brain microvascular endothelial cells. J Neuroinflammation 9:152. doi: 10.1186/1742-2094-9-152 PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Uesugi N, Muramatsu R, Yamashita T (2009) Endothelin promotes neurite elongation by a mechanism dependent on c-Jun N-terminal kinase. Biochem Biophys Res Commun 383:509–512. doi: 10.1016/j.bbrc.2009.04.085 PubMedCrossRefGoogle Scholar
  66. 66.
    Rosano L, Varmi M, Salani D, Di Castro V, Spinella F, Natali PG, Bagnato A (2001) Endothelin-1 induces tumor proteinase activation and invasiveness of ovarian carcinoma cells. Cancer Res 61:8340–8346PubMedGoogle Scholar
  67. 67.
    Wu MH, Chen LM, Hsu HH, Lin JA, Lin YM, Tsai FJ, Tsai CH, Huang CY, Tang CH (2013) Endothelin-1 enhances cell migration through COX-2 up-regulation in human chondrosarcoma. Biochim Biophys Acta 1830:3355–3364. doi: 10.1016/j.bbagen.2013.03.014 PubMedCrossRefGoogle Scholar
  68. 68.
    Wu MH, Huang CY, Lin JA, Wang SW, Peng CY, Cheng HC, Tang CH (2013) Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene. doi: 10.1038/onc.2013.109 Google Scholar
  69. 69.
    Roberti MP, Arriaga JM, Bianchini M, Quinta HR, Bravo AI, Levy EM, Mordoh J, Barrio MM (2012) Protein expression changes during human triple negative breast cancer cell line progression to lymph node metastasis in a xenografted model in nude mice. Cancer Biol Ther 13:1123–1140. doi: 10.4161/cbt.21187 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Siqueira AS, Gama-de-Souza LN, Arnaud MV, Pinheiro JJ, Jaeger RG (2010) Laminin-derived peptide AG73 regulates migration, invasion, and protease activity of human oral squamous cell carcinoma cells through syndecan-1 and beta1 integrin. Tumour Biol 31:46–58. doi: 10.1007/s13277-009-0008-x PubMedCrossRefGoogle Scholar
  71. 71.
    Yu T, Wu Y, Helman JI, Wen Y, Wang C, Li L (2011) CXCR4 promotes oral squamous cell carcinoma migration and invasion through inducing expression of MMP-9 and MMP-13 via the ERK signaling pathway. Mol Cancer Res 9:161–172. doi: 10.1158/1541-7786.MCR-10-0386 PubMedCrossRefGoogle Scholar
  72. 72.
    Motta EM, Calixto JB, Rae GA (2006) Mechanical hyperalgesia induced by endothelin-1 in rats is mediated via phospholipase C, protein kinase C, and MAP kinases. Exp Biol Med (Maywood) 231:1141–1145Google Scholar
  73. 73.
    Shah BH, Baukal AJ, Chen HD, Shah AB, Catt KJ (2006) Mechanisms of endothelin-1-induced MAP kinase activation in adrenal glomerulosa cells. J Steroid Biochem Mol Biol 102:79–88. doi: 10.1016/j.jsbmb.2006.09.026 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Cianfrocca R, Rosano L, Spinella F, Di Castro V, Natali PG, Bagnato A (2010) Beta-arrestin-1 mediates the endothelin-1-induced activation of Akt and integrin-linked kinase. Can J Physiol Pharmacol 88:796–801. doi: 10.1139/Y10-052 PubMedCrossRefGoogle Scholar
  75. 75.
    Wu CY, Hsieh HL, Sun CC, Yang CM (2009) IL-1beta induces MMP-9 expression via a Ca2+-dependent CaMKII/JNK/c-JUN cascade in rat brain astrocytes. Glia 57:1775–1789. doi: 10.1002/glia.20890 PubMedCrossRefGoogle Scholar
  76. 76.
    Tseng HC, Lee IT, Lin CC, Chi PL, Cheng SE, Shih RH, Hsiao LD, Yang CM (2013) IL-1beta promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-kappaB- and AP-1-dependent pathways. PLoS ONE 8:e57955. doi: 10.1371/journal.pone.0057955 PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Lu DY, Yu WH, Yeh WL, Tang CH, Leung YM, Wong KL, Chen YF, Lai CH, Fu WM (2009) Hypoxia-induced matrix metalloproteinase-13 expression in astrocytes enhances permeability of brain endothelial cells. J Cell Physiol 220:163–173. doi: 10.1002/jcp.21746 PubMedCrossRefGoogle Scholar
  78. 78.
    Jung JS, Jung K, Kim DH, Kim HS (2012) Selective inhibition of MMP-9 gene expression by mangiferin in PMA-stimulated human astroglioma cells: involvement of PI3K/Akt and MAPK signaling pathways. Pharmacol Res 66:95–103. doi: 10.1016/j.phrs.2012.02.013 PubMedCrossRefGoogle Scholar
  79. 79.
    Lee EJ, Kim SY, Hyun JW, Min SW, Kim DH, Kim HS (2010) Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chem Biol Interact 185:18–24. doi: 10.1016/j.cbi.2010.02.037 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wen-Tsong Hsieh
    • 1
  • Wei-Lan Yeh
    • 2
  • Ruo-Yuo Cheng
    • 1
  • Chingju Lin
    • 3
  • Cheng-Fang Tsai
    • 4
  • Bor-Ren Huang
    • 5
  • Caren Yu-Ju Wu
    • 6
  • Hsiao-Yun Lin
    • 7
  • Shiang-Suo Huang
    • 8
  • Dah-Yuu Lu
    • 9
  1. 1.Department of Pharmacology, School of MedicineChina Medical UniversityTaichungTaiwan
  2. 2.Department of Cell and Tissue Engineering and Department of Medical ResearchChanghua Christian HospitalChanghuaTaiwan
  3. 3.Department of Physiology, School of MedicineChina Medical UniversityTaichungTaiwan
  4. 4.Department of BiotechnologyAsia UniversityTaichungTaiwan
  5. 5.Department of NeurosurgeryTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationTaichungTaiwan
  6. 6.Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
  7. 7.Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan
  8. 8.Department of Pharmacology and Institute of Medicine, College of MedicineChung Shan Medical UniversityTaichungTaiwan
  9. 9.Graduate Institute of Neural and Cognitive SciencesChina Medical UniversityTaichungTaiwan

Personalised recommendations