Skip to main content

Advertisement

Log in

PI3K pathway inhibitors for the treatment of brain metastases with a focus on HER2+ breast cancer

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The incidence of breast cancer brain metastases has increased in recent years, largely due to improved control of systemic disease with human epidermal growth factor receptor 2 (HER2)-targeted agents and the inability of most of these agents to efficiently cross the blood–blood barrier (BBB) and control central nervous system disease. There is, therefore, an urgent unmet need for treatments to prevent and treat HER2+ breast cancer brain metastases (BCBMs). Aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway is frequently observed in many cancers, including primary breast tumors and BCBMs. Agents targeting key components of this pathway have demonstrated antitumor activity in diverse cancers, and may represent a new treatment strategy for BCBMs. In preclinical studies, several inhibitors of PI3K and mTOR have demonstrated an ability to penetrate the BBB and down-regulate PI3K signaling, indicating that these agents may be potential therapies for brain metastatic disease. The PI3K inhibitor buparlisib (BKM120) and the mTOR inhibitor everolimus (RAD001) are currently under evaluation in combination with trastuzumab in patients with HER2+ BCBMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  2. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    Article  CAS  PubMed  Google Scholar 

  3. Baselga J, Cortes J, Kim SB et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119

    Article  CAS  PubMed  Google Scholar 

  4. Verma S, Miles D, Gianni L et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  CAS  PubMed  Google Scholar 

  5. Brufsky AM, Mayer M, Rugo HS et al (2011) Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 17:4834–4843

    Article  CAS  PubMed  Google Scholar 

  6. Souglakos J, Vamvakas L, Apostolaki S et al (2006) Central nervous system relapse in patients with breast cancer is associated with advanced stages, with the presence of circulating occult tumor cells and with the HER2/neu status. Breast Cancer Res 8:R36

    Article  PubMed Central  PubMed  Google Scholar 

  7. Leyland-Jones B (2009) Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J Clin Oncol 27:5278–5286

    Article  PubMed  Google Scholar 

  8. Berghoff A, Bago-Horvath Z, De Vries C et al (2012) Brain metastases free survival differs between breast cancer subtypes. Br J Cancer 106:440–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13:1648–1655

    Article  CAS  PubMed  Google Scholar 

  10. Bendell JC, Domchek SM, Burstein HJ et al (2003) Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97:2972–2977

    Article  PubMed  Google Scholar 

  11. Palmieri D, Bronder JL, Herring JM et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190–4198

    Article  CAS  PubMed  Google Scholar 

  12. Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V (2007) Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood–brain barrier. Anticancer Drugs 18:23–28

    Article  CAS  PubMed  Google Scholar 

  13. Laufman LR, Forsthoefel KF (2001) Use of intrathecal trastuzumab in a patient with carcinomatous meningitis. Clin Breast Cancer 2:235

    Article  CAS  PubMed  Google Scholar 

  14. Oliveira M, Braga S, Passos-Coelho JL, Fonseca R, Oliveira J (2011) Complete response in HER2+ leptomeningeal carcinomatosis from breast cancer with intrathecal trastuzumab. Breast Cancer Res Treat 127:841–844

    Article  CAS  PubMed  Google Scholar 

  15. Platini C, Long J, Walter S (2006) Meningeal carcinomatosis from breast cancer treated with intrathecal trastuzumab. Lancet Oncol 7:778–780

    Article  PubMed  Google Scholar 

  16. Mir O, Ropert S, Alexandre J, Lemare F, Goldwasser F (2008) High-dose intrathecal trastuzumab for leptomeningeal metastases secondary to HER-2 overexpressing breast cancer. Ann Oncol 19:1978–1980

    Article  CAS  PubMed  Google Scholar 

  17. Taskar KS, Rudraraju V, Mittapalli RK et al (2012) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 29:770–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gril B, Palmieri D, Bronder JL et al (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100:1092–1103

    Article  CAS  PubMed  Google Scholar 

  19. Cameron D, Casey M, Press M et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112:533–543

    Article  CAS  PubMed  Google Scholar 

  20. Lin NU, Dieras V, Paul D et al (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459

    Article  CAS  PubMed  Google Scholar 

  21. Bachelot T, Romieu G, Campone M et al (2013) Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol 14:64–71

    Article  CAS  PubMed  Google Scholar 

  22. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Baselga J (2011) Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist 16(suppl 1):12–19

    Article  PubMed  Google Scholar 

  24. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28:1075–1083

    Article  CAS  PubMed  Google Scholar 

  25. Gewinner C, Wang ZC, Richardson A et al (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29:5657–5670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. O’Reilly KE, Rojo F, She QB et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates AKT. Cancer Res 66:1500–1508

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lopez-Knowles E, O’Toole SA, McNeil CM et al (2010) PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 126:1121–1131

    CAS  PubMed  Google Scholar 

  29. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  30. Berns K, Horlings HM, Hennessy BT et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402

    Article  CAS  PubMed  Google Scholar 

  31. Jegg AM, Ward TM, Iorns E et al (2012) PI3K independent activation of mTORC1 as a target in lapatinib-resistant ERBB2+ breast cancer cells. Breast Cancer Res Treat 136:683–692

    Article  CAS  PubMed  Google Scholar 

  32. Adamo B, Deal AM, Burrows E et al (2011) Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases. Breast Cancer Res 13:R125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hohensee I, Lamszus K, Riethdorf S et al (2013) Frequent genetic alterations in EGFR- and HER2-driven pathways in breast cancer brain metastases. Am J Pathol 183:83–95

    Article  CAS  PubMed  Google Scholar 

  34. O’Reilly T, McSheehy PM, Kawai R et al (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 65:625–639

    Article  PubMed  Google Scholar 

  35. Franz DN, Belousova E, Sparagana S et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381:125–132

    Article  CAS  PubMed  Google Scholar 

  36. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529

    Article  CAS  PubMed  Google Scholar 

  37. Andre F, Campone M, O’Regan R et al (2010) Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol 28:5110–5115

    Article  CAS  PubMed  Google Scholar 

  38. Morrow PK, Wulf GM, Ensor J et al (2011) Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol 29:3126–3132

    Article  CAS  PubMed  Google Scholar 

  39. O’Regan R, Ozguroglu M, Andre F et al (2013) Phase III, randomized, double-blind, placebo-controlled multicenter trial of daily everolimus plus weekly trastuzumab and vinorelbine in trastuzumab-resistant, advanced breast cancer (BOLERO-3). J Clin Oncol 31 (suppl; abstr 505)

  40. Zhao H, Cui K, Nie F et al (2012) The effect of mTOR inhibition alone or combined with MEK inhibitors on brain metastasis: an in vivo analysis in triple-negative breast cancer models. Breast Cancer Res Treat 131:425–436

    Article  CAS  PubMed  Google Scholar 

  41. Wolff AC, Lazar AA, Bondarenko I et al (2013) Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol 31:195–202

    Article  CAS  PubMed  Google Scholar 

  42. Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304

    Article  CAS  PubMed  Google Scholar 

  43. Lin F, Buil L, Sherris D, Beijnen JH, van Tellingen O (2013) Dual mTORC1 and mTORC2 inhibitor Palomid 529 penetrates the blood-brain barrier without restriction by ABCB1 and ABCG2. Int J Cancer 133(5):1222–1233

    Article  CAS  PubMed  Google Scholar 

  44. Carracedo A, Ma L, Teruya-Feldstein J et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3 K-dependent feedback loop in human cancer. J Clin Invest 118:3065–3074

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC et al (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 1:248–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Maira SM, Pecchi S, Huang A et al (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-Kinase inhibitor. Mol Cancer Ther 11:317–328

    Article  CAS  PubMed  Google Scholar 

  47. Nanni P, Nicoletti G, Palladini A et al (2012) Multiorgan Metastasis of Human HER-2(+) Breast Cancer in Rag2(-/-);Il2rg(-/-) Mice and Treatment with PI3K Inhibitor. PLoS One 7:e39626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Maira M, Schnell C, Lollini P et al (2012) Preclinical and preliminary clinical activity of NVP-BKM120, an oral pan-class I PI3K inhibitor, in the brain. Ann Oncol 23 (suppl 9; abstr 1675)

  49. Wen P, Yung W, Mellinghoff I et al (2013) Phase II trial of the phosphatidyinositol-3 kinase (PI3K) inhibitor BKM120 in recurrent glioblastoma (GBM). J Clin Oncol 31 (suppl; abstr 2015)

  50. Bendell JC, Rodon J, Burris HA et al (2012) Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 30:282–290

    Article  CAS  PubMed  Google Scholar 

  51. Pistilli B, Urruticoechea A, Chan S et al (2012) Ph Ib/II study of BKM120 plus trastuzumab (T) in patients with T-resistant HER2+ advanced breast cancer (BC). Ann Oncol 23 (suppl 9; abstr 3180)

  52. Tohda C, Nakanishi R, Kadowaki M (2009) Hyperactivity, memory deficit and anxiety-related behaviors in mice lacking the p85alpha subunit of phosphoinositide-3 kinase. Brain Dev 31:69–74

    Article  PubMed  Google Scholar 

  53. Ackermann TF, Hortnagl H, Wolfer DP et al (2008) Phosphatidylinositide dependent kinase deficiency increases anxiety and decreases GABA and serotonin abundance in the amygdala. Cell Physiol Biochem 22:735–744

    Article  CAS  PubMed  Google Scholar 

  54. Koul D, Shen R, Kim YW et al (2010) Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro Oncol 12:559–569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hong DS, Bowles DW, Falchook GS et al (2012) A multicenter Phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 18:4173–4182

    Article  CAS  PubMed  Google Scholar 

  56. Edelman G, Bedell C, Shapiro G (2010) A phase I dose-escalation study of XL147 (SAR245408), a PI3K inhibitor administered orally to patients (pts) with advanced malignancies. J Clin Oncol 28(6):1075–1083 (suppl; abstr 3004)

    Article  Google Scholar 

  57. Cloughesy TF, Mischel P, Omuro A et al (2013) Tumor pharmacokinetics (PK) and pharmacodynamics (PD) of SAR245409 (XL765) and SAR245408 (XL147) administered as single agents to patients with recurrent glioblastoma (GBM): An Ivy Foundation early-phase clinical trials consortium study. J Clin Oncol 31 (suppl; abstr 2012)

  58. Liu TJ, Koul D, LaFortune T et al (2009) NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 8:2204–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Krop I, Saura C, Rodon J et al (2012) A Phase I/Ib dose-escalation study of BEZ235 in combination with trastuzumab in patients with PI3-kinase or PTEN altered HER2+ metastatic breast cancer. J Clin Oncol 30(12):282–290 suppl; abstr 508

    Google Scholar 

  60. Brana I, LoRusso P, Baselga J et al (2010) A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765 (SAR245409), a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced malignancies. J Clin Oncol 28 (suppl; abstr 3030)

  61. Salphati L, Heffron TP, Alicke B et al (2012) Targeting the PI3K pathway in the brain-efficacy of a pi3k inhibitor optimized to cross the blood–brain barrier. Clin Cancer Res 18:6239–6248

    Article  CAS  PubMed  Google Scholar 

  62. Peddi PF, Hurvitz SA (2014) What Does the Future Hold for PI3K/AKT/mTOR Inhibitors in BreastCancer? J OncoPathol 1(4):73-81

    Google Scholar 

Download references

Acknowledgments

We thank Amanda Quinn for her medical editorial assistance with this manuscript. Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals. Dr. Hurvitz receives support from the National Cancer Institute of the National Institutes of Health under Award Number P30CA016042. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Dr. Peddi receives support from the Conquer Cancer Foundation of the American Society of Oncology through a Young Investigator Award for year 2013–2014.

Conflict of interest

Dr. Hurvitz has received Novartis reimbursement for travel to international conference. Dr. Peddi has no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Hurvitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peddi, P.F., Hurvitz, S.A. PI3K pathway inhibitors for the treatment of brain metastases with a focus on HER2+ breast cancer. J Neurooncol 117, 7–13 (2014). https://doi.org/10.1007/s11060-014-1369-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1369-6

Keywords

Navigation