Journal of Neuro-Oncology

, Volume 116, Issue 2, pp 237–249 | Cite as

Epigenetic repression of the dopamine receptor D4 in pediatric tumors of the central nervous system

  • Rebekka Unland
  • Kornelius Kerl
  • Sabrina Schlosser
  • Nicole Farwick
  • Tanja Plagemann
  • Birigit Lechtape
  • Steven C. Clifford
  • Jonas H. Kreth
  • Joachim Gerss
  • Jörg Mühlisch
  • Günther H. S. Richter
  • Martin Hasselblatt
  • Michael C. Frühwald
Laboratory Investigation


Epigenetic alterations are common events in cancer. Using a genome wide methylation screen (Restriction Landmark Genomic Scanning—RLGS) we identified the gene for the dopamine receptor D4 (DRD4) as tumor-specific methylated. As DRD4 is involved in early brain development and may thus be involved in developmentally dependent tumors of the CNS in children epigenetic deregulation of DRD4 and its functional consequences were analyzed in vitro. CpG methylation of DRD4 was detected in 18/24 medulloblastomas, 23/29 ependymomas, 6/6 high-grade gliomas, 7/10 CNS PNET and 8/8 cell lines by qCOBRA and bisulfite sequencing. Real-time RT-PCR demonstrated a significantly inferior expression of DRD4 in primary tumors compared to cell lines and non-malignant control tissues. Epigenetic deregulation of DRD4 was analyzed in reexpression experiments and restoration of DRD4 was observed in medulloblastoma (MB) cells treated with 5-Aza-CdR. Reexpression was not accompanied by demethylation of the DRD4 promoter but by a significant decrease of H3K27me3 and of bound enhancer of zeste homologue 2 (EZH2). Knockdown of EZH2 demonstrated DRD4 as a direct target for inhibition by EZH2. Stimulation of reexpressed DRD4 resulted in an activation of ERK1/2. Our analyses thus disclose that DRD4 is epigenetically repressed in CNS tumors of childhood. DRD4 is a direct target of EZH2 in MB cell lines. EZH2 appears to dominate over aberrant DNA methylation in the epigenetic inhibition of DRD4, which eventually leads to inhibition of a DRD4-mediated stimulation of the ERK1/2 kinase pathway.


CNS tumors of children Epigenetic silencing Dopamine receptor D4 (DRD4) EZH2 ERK1/2 signaling 



This work was supported by grants from the Deutsche Krebshilfe (109062 to MF), the Cora Lobscheid-, the CD- and the Astrid-Haugstrup-Sörensen Gedächtnis-Stiftung in the Stifterverband für die Deutsche Wissenschaft and is part of the Translational Sarcoma Research Network supported by the BMBF (DRL 01GM0869 and FK 01GM1104B to RU and GHSR). Tumor tissue was acquired with the friendly support of the following institutions: Neuropathology, University Hospital Muenster, Germany (M. Hasselblatt); Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK (S.C. Clifford).

Conflict of interest

The authors do not declare any conflict of interest.

Supplementary material

11060_2013_1313_MOESM1_ESM.pdf (65 kb)
Supplementary material 1 (PDF 64 kb)
11060_2013_1313_MOESM2_ESM.pdf (45 kb)
Supplementary material 2 (PDF 45 kb)
11060_2013_1313_MOESM3_ESM.pdf (141 kb)
Supplementary material 3 (PDF 140 kb)
11060_2013_1313_MOESM4_ESM.pdf (263 kb)
Supplementary material 4 (PDF 262 kb)
11060_2013_1313_MOESM5_ESM.pdf (35 kb)
Supplementary material 5 (PDF 35 kb)
11060_2013_1313_MOESM6_ESM.pdf (152 kb)
Supplementary material 6 (PDF 151 kb)
11060_2013_1313_MOESM7_ESM.pdf (66 kb)
Supplementary material 7 (PDF 65 kb)
11060_2013_1313_MOESM8_ESM.pdf (68 kb)
Supplementary material 8 (PDF 68 kb)
11060_2013_1313_MOESM9_ESM.pdf (78 kb)
Supplementary material 9 (PDF 77 kb)
11060_2013_1313_MOESM10_ESM.pdf (97 kb)
Supplementary material 10 (PDF 97 kb)


  1. 1.
    Frühwald MC, Rutkowski S (2011) Tumors of the central nervous system in children and adolescents. Dtsch Arztebl Int 108:390–397. doi: 10.3238/arztebl.2011.0390 PubMedCentralPubMedGoogle Scholar
  2. 2.
    Schlosser S, Wagner S, Muhlisch J, Hasselblatt M, Gerss J, Wolff JE, Frühwald MC (2010) MGMT as a potential stratification marker in relapsed high-grade glioma of children: the HIT-GBM experience. Pediatr Blood Cancer 54:228–237. doi: 10.1002/pbc.22323 PubMedGoogle Scholar
  3. 3.
    Costello JF, Frühwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC et al (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138. doi: 10.1038/72785 PubMedCrossRefGoogle Scholar
  4. 4.
    Frühwald MC, O’Dorisio MS, Dai Z, Tanner SM, Balster DA, Gao X, Wright FA, Plass C (2001) Aberrant promoter methylation of previously unidentified target genes is a common abnormality in medulloblastomas—implications for tumor biology and potential clinical utility. Oncogene 20:5033–5042. doi: 10.1038/sj.onc.1204613 PubMedCrossRefGoogle Scholar
  5. 5.
    Lindsey JC, Lusher ME, Anderton JA, Bailey S, Gilbertson RJ, Pearson AD, Ellison DW, Clifford SC (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25:661–668. doi: 10.1093/carcin/bgh055 PubMedCrossRefGoogle Scholar
  6. 6.
    Muhlisch J, Schwering A, Grotzer M, Vince GH, Roggendorf W, Hagemann C, Sorensen N, Rickert CH, Osada N, Jurgens H et al (2006) Epigenetic repression of RASSF1A but not CASP8 in supratentorial PNET (sPNET) and atypical teratoid/rhabdoid tumors (AT/RT) of childhood. Oncogene 25:1111–1117. doi: 10.1038/sj.onc.1209137 PubMedCrossRefGoogle Scholar
  7. 7.
    Muhlisch J, Bajanowski T, Rickert CH, Roggendorf W, Wurthwein G, Jurgens H, Frühwald MC (2007) Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses. J Neurooncol 83:17–29. doi: 10.1007/s11060-006-9309-8 PubMedCrossRefGoogle Scholar
  8. 8.
    McCabe MT, Brandes JC, Vertino PM (2009) Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res 15:3927–3937. doi: 10.1158/1078-0432.CCR-08-2784 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi: 10.1016/j.cell.2007.02.005 PubMedCrossRefGoogle Scholar
  10. 10.
    Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647:21–29. doi: 10.1016/j.mrfmmm.2008.07.010 PubMedCrossRefGoogle Scholar
  11. 11.
    Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedGoogle Scholar
  12. 12.
    Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D(4) receptor: one decade of research. Eur J Pharmacol 405:303–327PubMedCrossRefGoogle Scholar
  13. 13.
    Dai Z, Weichenhan D, Wu YZ, Hall JL, Rush LJ, Smith LT, Raval A, Yu L, Kroll D, Mühlisch J et al (2002) An AscI boundary library for the studies of genetic and epigenetic alterations in CpG islands. Genome Res 12:1591–1598. doi: 10.1101/gr.197402 PubMedCrossRefGoogle Scholar
  14. 14.
    Hasselblatt M, Muhlisch J, Wrede B, Kallinger B, Jeibmann A, Peters O, Kutluk T, Wolff JE, Paulus W, Frühwald MC (2009) Aberrant MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation in choroid plexus tumors. J Neurooncol 91:151–155. doi: 10.1007/s11060-008-9694-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Richter GH, Plehm S, Fasan A, Rossler S, Unland R, Bennani-Baiti IM, Hotfilder M, Lowel D, von Luettichau I, Mossbrugger I et al (2009) EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci USA 106:5324–5329. doi: 10.1073/pnas.0810759106 PubMedCrossRefGoogle Scholar
  16. 16.
    Oak JN, Lavine N, Van Tol HH (2001) Dopamine D(4) and D(2L) receptor stimulation of the mitogen-activated protein kinase pathway is dependent on trans-activation of the platelet-derived growth factor receptor. Mol Pharmacol 60:92–103PubMedGoogle Scholar
  17. 17.
    Gill RS, Hsiung MS, Sum CS, Lavine N, Clark SD, Van Tol HH (2010) The dopamine D4 receptor activates intracellular platelet-derived growth factor receptor beta to stimulate ERK1/2. Cell Signal 22:285–290. doi: 10.1016/j.cellsig.2009.09.031 PubMedCrossRefGoogle Scholar
  18. 18.
    Pfister S, Schlaeger C, Mendrzyk F, Wittmann A, Benner A, Kulozik A, Scheurlen W, Radlwimmer B, Lichter P (2007) Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res 35:e51. doi: 10.1093/nar/gkm094 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hamilton DW, Lusher ME, Lindsey JC, Ellison DW, Clifford SC (2005) Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett 227:75–81. doi: 10.1016/j.canlet.2004.11.044 PubMedCrossRefGoogle Scholar
  20. 20.
    Rush LJ, Dai Z, Smiraglia DJ, Gao X, Wright FA, Frühwald M, Costello JF, Held WA, Yu L, Krahe R et al (2001) Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci. Blood 97:3226–3233PubMedCrossRefGoogle Scholar
  21. 21.
    Freed WJ, Chen J, Backman CM, Schwartz CM, Vazin T, Cai J, Spivak CE, Lupica CR, Rao MS, Zeng X (2008) Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15.5 and comparison to human dopaminergic neurons. PLoS One 3:e1422. doi: 10.1371/journal.pone.0001422 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Pai S, Verrier F, Sun H, Hu H, Ferrie AM, Eshraghi A, Fang Y (2012) Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell. J Biomol Screen 17:1180–1191. doi: 10.1177/1087057112455059 PubMedCrossRefGoogle Scholar
  23. 23.
    de Bustros A, Nelkin BD, Silverman A, Ehrlich G, Poiesz B, Baylin SB (1988) The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc Natl Acad Sci USA 85:5693–5697PubMedCrossRefGoogle Scholar
  24. 24.
    Cichon S, Nothen MM, Wolf HK, Propping P (1996) Lack of imprinting of the human dopamine D4 receptor (DRD4) gene. Am J Med Genet 67:229–231PubMedCrossRefGoogle Scholar
  25. 25.
    Teunis MA, Kavelaars A, Voest E, Bakker JM, Ellenbroek BA, Cools AR, Heijnen CJ (2002) Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 16:1465–1467. doi: 10.1096/fj.02-0145fje PubMedGoogle Scholar
  26. 26.
    Chakroborty D, Sarkar C, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 10:4349–4356. doi: 10.1158/1078-0432.CCR-04-0059 PubMedCrossRefGoogle Scholar
  27. 27.
    Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 287:H1554–H1560. doi: 10.1152/ajpheart.00272.2004 PubMedCrossRefGoogle Scholar
  28. 28.
    Basu S, Dasgupta PS (1997) Alteration of dopamine D2 receptors in human malignant stomach tissue. Dig Dis Sci 42:1260–1264PubMedCrossRefGoogle Scholar
  29. 29.
    Basu S, Dasgupta PS (1999) Decreased dopamine receptor expression and its second-messenger cAMP in malignant human colon tissue. Dig Dis Sci 44:916–921PubMedCrossRefGoogle Scholar
  30. 30.
    Barili P, Bronzetti E, Felici L, Ferrante F, Ricci A, Zaccheo D, Amenta F (1996) Age-dependent changes in the expression of dopamine receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 71:45–50PubMedCrossRefGoogle Scholar
  31. 31.
    Noain D, Avale ME, Wedemeyer C, Calvo D, Peper M, Rubinstein M (2006) Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice. Eur J Neurosci 24:2429–2438. doi: 10.1111/j.1460-9568.2006.05148.x PubMedCrossRefGoogle Scholar
  32. 32.
    Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G, Jones PA (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62:6456–6461PubMedGoogle Scholar
  33. 33.
    Rada-Iglesias A, Enroth S, Andersson R, Wanders A, Pahlman L, Komorowski J, Wadelius C (2009) Histone H3 lysine 27 trimethylation in adult differentiated colon associated to cancer DNA hypermethylation. Epigenetics 4:107–113PubMedCrossRefGoogle Scholar
  34. 34.
    Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335. doi: 10.1093/emboj/cdg542 PubMedCrossRefGoogle Scholar
  35. 35.
    Chang CJ, Hung MC (2012) The role of EZH2 in tumour progression. Br J Cancer 106:243–247. doi: 10.1038/bjc.2011.551 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242. doi: 10.1038/ng1972 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, Van Criekinge W, Schuebel KE, Baylin SB (2008) Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res 68:5753–5759. doi: 10.1158/0008-5472.CAN-08-0700 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. doi: 10.1038/ng.127 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Fujii S, Ito K, Ito Y, Ochiai A (2008) Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 283:17324–17332. doi: 10.1074/jbc.M800224200 PubMedCrossRefGoogle Scholar
  40. 40.
    Takebayashi S, Nakao M, Fujita N, Sado T, Tanaka M, Taguchi H, Okumura K (2001) 5-Aza-2′-deoxycytidine induces histone hyperacetylation of mouse centromeric heterochromatin by a mechanism independent of DNA demethylation. Biochem Biophys Res Commun 288:921–926. doi: 10.1006/bbrc.2001.5863 PubMedCrossRefGoogle Scholar
  41. 41.
    Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290. doi: 10.1038/sj.onc.1210421 PubMedCrossRefGoogle Scholar
  42. 42.
    Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405. doi: 10.1016/j.bbadis.2009.12.009 PubMedCrossRefGoogle Scholar
  43. 43.
    Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  44. 44.
    Jones DT, Gronych J, Lichter P, Witt O, Pfister SM (2012) MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 69:1799–1811. doi: 10.1007/s00018-011-0898-9 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Menard C, Hein P, Paquin A, Savelson A, Yang XM, Lederfein D, Barnabe-Heider F, Mir AA, Sterneck E, Peterson AC et al (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36:597–610PubMedCrossRefGoogle Scholar
  46. 46.
    Hadari YR, Kouhara H, Lax I, Schlessinger J (1998) Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol 18:3966–3973PubMedCentralPubMedGoogle Scholar
  47. 47.
    Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28:6983–6995. doi: 10.1523/JNEUROSCI.0679-08.2008 PubMedCrossRefGoogle Scholar
  48. 48.
    Sato T, Joyner AL, Nakamura H (2004) How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev Growth Differ 46:487–494. doi: 10.1111/j.1440-169x.2004.00769.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rebekka Unland
    • 1
  • Kornelius Kerl
    • 1
  • Sabrina Schlosser
    • 1
  • Nicole Farwick
    • 1
  • Tanja Plagemann
    • 1
  • Birigit Lechtape
    • 1
  • Steven C. Clifford
    • 2
  • Jonas H. Kreth
    • 3
  • Joachim Gerss
    • 4
  • Jörg Mühlisch
    • 1
  • Günther H. S. Richter
    • 5
  • Martin Hasselblatt
    • 6
  • Michael C. Frühwald
    • 1
    • 7
  1. 1.Department of Pediatric Hematology and OncologyUniversity Children’s Hospital MünsterMünsterGermany
  2. 2.Northern Institute for Cancer ResearchNewcastle UniversityNewcastle upon TyneUK
  3. 3.Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s HospitalHeinrich Heine UniversityDüsseldorfGermany
  4. 4.Institute of Biostatistics and Clinical ResearchUniversity of MünsterMünsterGermany
  5. 5.Children’s Cancer Research Center and Department of Pediatrics, Roman Herzog Comprehensive Cancer Research Center and Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  6. 6.Institute of NeuropathologyUniversity Hospital MünsterMünsterGermany
  7. 7.Swabian Children’s Cancer CenterChildren’s Hospital AugsburgAugsburgGermany

Personalised recommendations