Skip to main content

Advertisement

Log in

Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell–cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32 % U87MG, 15 % U138MG, 1 % A172, and 50 % K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  3. Yamanaka R (2006) Novel immunotherapeutic approaches to glioma. Curr Opin Mol Ther 8:46–51

    CAS  PubMed  Google Scholar 

  4. Vauleon E, Avril T, Collet B, Mosser J, Quillien V (2010) Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol. doi:10.1155/2010/689171

    PubMed Central  PubMed  Google Scholar 

  5. Ogbomo H, Cinatl J Jr, Mody CH, Forsyth PA (2011) Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol Med 17:433–441

    Article  CAS  PubMed  Google Scholar 

  6. Hayday AC (2000) γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  CAS  PubMed  Google Scholar 

  7. Bonneville M, O’Brien RL, Born WK (2010) γδT cell effector functions a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478

    Article  CAS  PubMed  Google Scholar 

  8. Haas W, Pereira P, Tonegawa S (1993) Gamma/delta cells. Annu Rev Immunol 11:637–685

    Article  CAS  PubMed  Google Scholar 

  9. Kabelitz D, Wesch D, He W (2007) Perspectives of γδT cells in tumor immunology. Cancer Res 67:5–8

    Article  CAS  PubMed  Google Scholar 

  10. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas AK, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδT cells in Escherichia coli. FEBS Lett 509:317–322

    Article  CAS  PubMed  Google Scholar 

  12. Vantourout P, Mookerjee-Basu J, Rolland C, Pont F, Martin H, Davrinche C, Martinez LO, Perret B, Collet X, Perigaud C, Peyrottes S, Champagne E (2009) Specific requirements for Vγ9 Vδ2 T cell stimulation by a natural adenylated phosphoantigen. J Immunol 183:3848–3857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J, Li J, Kuball J, Adams EJ, Netzer S, Dechanet-Merville J, Leger A, Herrmann T, Breathnach R, Olive D, Bonneville M, Scotet E (2012) Key implication of CD277/Butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδT cell subset. Blood 120:2269–2279

    Article  CAS  PubMed  Google Scholar 

  14. Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M, Desille M, de La Pintiere CT, Daniel P, Bouet F, Catros V (2009) DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9 Vδ2 T cells. Eur J Immunol 39:1361–1368

    Article  CAS  PubMed  Google Scholar 

  15. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D’Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human γδT cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457

    Article  CAS  PubMed  Google Scholar 

  16. Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E, Bonneville M, Jotereau F (2005) Vγ9 Vδ2 T cell response to colon carcinoma cells. J Immunol 175:5481–5488

    CAS  PubMed  Google Scholar 

  17. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, La Mendola C, Guggino G, D’Asaro M, Orlando V, Scarpa F, Roberts A, Caccamo N, Stassi G, Dieli F, Hayday AC (2010) In vivo manipulation of Vγ9 Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161:290–297

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting γδT lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70:10024–10027

    Article  CAS  PubMed  Google Scholar 

  19. Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, Dieli F, Stassi G (2009) Efficient killing of human colon cancer stem cells by γδT lymphocytes. J Immunol 182:7287–7296

    Article  CAS  PubMed  Google Scholar 

  20. Fujimiya Y, Suzuki Y, Katakura R, Miyagi T, Yamaguchi T, Yoshimoto T, Ebina T (1997) In vitro interleukin 12 activation of peripheral blood CD3(+)CD56(+) and CD3(+)CD56(-) gammadelta T cells from glioblastoma patients. Clin Cancer Res 3:633–643

    CAS  PubMed  Google Scholar 

  21. Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB, Meleth S, Lopez RD, Lamb LS Jr (2009) Characterization and immunotherapeutic potential of γδT-cells in patients with glioblastoma. Neuro Oncol 11:357–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bryant NL, Gillespie GY, Lopez RD, Markert JM, Cloud GA, Langford CP, Arnouk H, Su Y, Haines HL, Suarez-Cuervo C, Lamb LS Jr (2011) Preclinical evaluation of ex vivo expanded/activated γδT cells for immunotherapy of glioblastoma multiforme. J Neurooncol 101:179–188

    Article  PubMed  Google Scholar 

  23. Sato K, Kimura S, Segawa H, Yokota A, Matsumoto S, Kuroda J, Nogawa M, Yuasa T, Kiyono Y, Wada H, Maekawa T (2005) Cytotoxic effects of γδT cells expanded ex vivo by a third generation bisphosphonate for cancer immunotherapy. Int J Cancer 116:94–99

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K (2011) Phase I/II study of adoptive transfer of γδT cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother 60:1075–1084

    Article  CAS  PubMed  Google Scholar 

  25. Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T, Goto S, Yokokawa K, Suzuki K (2009) Clinical and immunological evaluation of zoledronate-activated Vγ9γδT-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 37:956–968

    Article  CAS  PubMed  Google Scholar 

  26. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, Takamoto S, Kakimi K (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδT cells. Eur J Cardiothorac Surg 37:1191–1197

    Article  PubMed  Google Scholar 

  27. Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R (1994) CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J Immunol Meth 172:227–239

    Article  CAS  Google Scholar 

  28. Cimini E, Piacentini P, Sacchi A, Gioia C, Leone S, Lauro GM, Martini F, Agrati C (2011) Zoledronic acid enhances Vδ2 T-lymphocyte antitumor response to human glioma cell lines. Int J Immunopathol Pharmacol 24:139–148

    CAS  PubMed  Google Scholar 

  29. Kuroda J, Kimura S, Segawa H, Kobayashi Y, Yoshikawa T, Urasaki Y, Ueda T, Enjo F, Tokuda H, Ottmann OG, Maekawa T (2003) The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph + leukemia activity of imatinib mesylate. Blood 102:2229

    Article  CAS  PubMed  Google Scholar 

  30. Battistini L, Salvetti M, Ristori G, Falcone M, Raine CS, Brosnan CF (1995) γδT cell receptor analysis supports a role for HSP 70 selection of lymphocytes in multiple sclerosis lesions. Mol Med 1:554–562

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Nathanson D, Mischel PS (2011) Charting the course across the blood–brain barrier. J Clin Invest 121:31–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Coomber BL, Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF (1987) Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood–brain barrier defect. J Neurooncol 5:299–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 22791352).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study design was approved by the ethics committee at Clinic Grandsoul Nara, Uda, Japan, and conformed to the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Nakazawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazawa, T., Nakamura, M., Park, Y.S. et al. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma. J Neurooncol 116, 31–39 (2014). https://doi.org/10.1007/s11060-013-1258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1258-4

Keywords

Navigation