Journal of Neuro-Oncology

, Volume 108, Issue 2, pp 285–290 | Cite as

The impact of chemotherapy on cognitive outcomes in adults with primary brain tumors

Effects of Standard of Art Treatment


There is growing recognition that chemotherapy may have short and long term impact on cognitive function of cancer patients. However, the impact of chemotherapy on the cognition of adult patients with primary brain tumor has not been extensively studied. This article will review the evidence for both positive and negative impact of chemotherapy on cognitive function of adult brain tumor patients as well as potential confounding factors.


Cognition Chemo-brain Chemotherapy Primary brain tumor Glioblastoma Primary CNS lymphoma Oligodendroglioma 


Conflict of interest statement

The author declares that she has no conflict of interest.


  1. 1.
    Janelsins MC, Kohli S, Mohile SG et al (2011) An update on cancer- and chemotherapy-related cognitive dysfunction: current status. Semin Oncol 38:431–438PubMedCrossRefGoogle Scholar
  2. 2.
    Wefel JS, Vardy J, Ahles T, Schagen SB (2011) International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12:703–708Google Scholar
  3. 3.
    Raffa RB, Tallarida RJ (2010) Effects on the visual system might contribute to some of the cognitive deficits of cancer chemotherapy-induced ‘chemo-fog’. J Clin Pharm Ther 35:249–255PubMedCrossRefGoogle Scholar
  4. 4.
    Dietrich J, Han R, Yang Y et al (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and vivo. J Biol 5:1–23CrossRefGoogle Scholar
  5. 5.
    Dietrich J, Monje M, Wefel J et al (2008) Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 13:1285–1295PubMedCrossRefGoogle Scholar
  6. 6.
    Saykin AJ, Ahles TA, McDonald BC (2003) Mechanisms of chemotherapy-induced cognitive disorders: neuropsychological, pathophysiological, and neuroimaging perspectives. Semin Clin Neuropsychiatry 8:201–216PubMedCrossRefGoogle Scholar
  7. 7.
    Petzold A, Mondria T, Kuhle J et al (2010) Evidence for acute neurotoxicity after chemotherapy. Ann Neurol 68:806–815PubMedCrossRefGoogle Scholar
  8. 8.
    Lucas MR (2010) The impact of chemo brain on the patient with a high-grade glioma. Adv Exp Med Biol 678:21–25PubMedCrossRefGoogle Scholar
  9. 9.
    Kaleita TA, Wellisch DK, Cloughesy TF et al (2004) Prediction of neurocognitive outcome in adult brain tumor patients. J Neurooncol 67:245–253PubMedCrossRefGoogle Scholar
  10. 10.
    Correa DD (2010) Neurocognitive function in brain tumors. Curr Neurol Neurosci Rep 10:232–239PubMedCrossRefGoogle Scholar
  11. 11.
    Fietta P, Fietta P, Delsante G (2009) Central nervous system effects of natural and synthetic glucocorticoids. Psychiatry Clin Neurosci 63(5):613–622PubMedCrossRefGoogle Scholar
  12. 12.
    Baile WF (1996) Neuropsychiatric disorders in cancer patients. Curr Opin Oncol 8(3):182–187PubMedCrossRefGoogle Scholar
  13. 13.
    Béhin A, Delattre JY (2004) Complications of radiation therapy on the brain and spinal cord. Semin Neurol 24(4):405–417PubMedCrossRefGoogle Scholar
  14. 14.
    Correa DD, Maron L, Harder H et al (2007) Cognitive functions in primary central nervous system lymphoma: literature review and assessment guidelines. Ann Oncol 18:1145–1151PubMedCrossRefGoogle Scholar
  15. 15.
    Sandor V, Stark-Vancs V, Pearson D et al (1998) Phase II trial of chemotherapy alone for primary CNS and intraocular lymphoma. J Clin Oncol 16:3000–3006PubMedGoogle Scholar
  16. 16.
    Correa DD, Anderson ND, Glass A et al (2003) Cognitive functions in primary central nervous system lymphoma patients treated with chemotherapy and stem cell transplantation: preliminary findings. Clin Adv Hematol Oncol 1:490PubMedGoogle Scholar
  17. 17.
    Fliessbach K, Urbach H, Helmstaedter C et al (2003) Cognitive performance and magnetic resonance imaging findings after high-dose systemic and intraventricular chemotherapy for primary central nervous system lymphoma. Arch Neurol 60:563–568PubMedCrossRefGoogle Scholar
  18. 18.
    Fliessbach K, Helmstaedter C, Urbach H et al (2005) Neuropsychological outcome after chemotherapy for primary CNS lymphoma: a prospective study. Neurology 64:1184–1188PubMedCrossRefGoogle Scholar
  19. 19.
    Pels H, Schmidt-Wolf IGH, Glasmacher A et al (2003) Primary central nervous system lymphoma: results of a pilot study and phase II study of systemic and intraventricular chemotherapy with deferred radiotherapy. J Clin Oncol 21:4489–4495PubMedCrossRefGoogle Scholar
  20. 20.
    Schlegel U, Pels H, Glasmacher A et al (2001) Combined systemic and intraventricular chemotherapy in primary CNS lymphoma: a pilot study. J Neurol Neurosurg Psychiatr 71:118–122PubMedCrossRefGoogle Scholar
  21. 21.
    Herrlinger U, Kuker W, Uhl M et al (2005) NOA-03 trial of high-dose methotrexate in primary central nervous system lymphoma: final report. Ann Neurol 57:843–847PubMedCrossRefGoogle Scholar
  22. 22.
    McAllister LD, Doolittle ND, Guastadisegni PE et al (2000) Cognitive outcomes and long-term follow-up results after enhanced chemotherapy delivery for primary central nervous system lymphoma. Neurosurgery 46:51–60PubMedCrossRefGoogle Scholar
  23. 23.
    Correa DD, DeAngelis LM, Shi W et al (2004) Cognitive functions in survivors of primary central nervous system lymphoma. Neurology 62:548–555PubMedCrossRefGoogle Scholar
  24. 24.
    Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880PubMedCrossRefGoogle Scholar
  25. 25.
    Lassman AB, Iwamoto FM, Cloughesy TF et al (2011) International retrospective study of over 1000 adults with anaplastic oligodendroglial tumors. Neuro Oncol 13:649–659PubMedCrossRefGoogle Scholar
  26. 26.
    Abrey LE, Childs BH, Paleologos N et al (2006) High-dose chemotherapy with stem cell rescue as initial therapy for anaplastic oligodendroglioma: long-term follow-up. Neuro Oncol 8:183–188PubMedCrossRefGoogle Scholar
  27. 27.
    A phase III intergroup study of radiotherapy versus temozolomide alone versus radiotherapy with concomitant and adjuvant temozolomide for patients with 1p/19q codeleted anaplastic glioma. identifier: NCT00887146Google Scholar
  28. 28.
    Soffietti R, Baumert BG, Bello L (2010) European federation of neurological societies. Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur J Neurol 17(9):1124–1133PubMedCrossRefGoogle Scholar
  29. 29.
    Mason WP, Krol GS, DeAngelis LM (1996) Low-grade oligodendroglioma responds to chemotherapy. Neurology 46(1):203–207PubMedCrossRefGoogle Scholar
  30. 30.
    Brada M, Viviers L, Abson C et al (2003) Phase II study of primary temozolomide chemotherapy in patients with WHO grade II gliomas. Ann Oncol 14(12):1715–1721PubMedCrossRefGoogle Scholar
  31. 31.
    Kesari S, Schiff D, Drappatz J et al (2009) Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin Cancer Res 15(1):330–337PubMedCrossRefGoogle Scholar
  32. 32.
    Correa DD, Shi W, Thaler HT et al (2008) Longitudinal cognitive follow-up in low grade gliomas. J Neurooncol 86(3):321–327PubMedCrossRefGoogle Scholar
  33. 33.
    van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12(6):583–593PubMedCrossRefGoogle Scholar
  34. 34.
    A phase III randomized study of radiotherapy versus temozolomide in patients with low-grade gliomas. identifier: NCT00182819Google Scholar
  35. 35.
    A phase III study of radiation therapy with or without temozolomide for symptomatic or progressive low-grade gliomas. identifier: NCT00978458Google Scholar
  36. 36.
    van den Bent MJ, Carpentier AF, Brandes AA et al (2006) Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol 24:2715–2722PubMedCrossRefGoogle Scholar
  37. 37.
    Cairncross G, Berkey B, Shaw E et al (2006) Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: intergroup radiation therapy oncology group trial 9402. J Clin Oncol 24:2707–2714PubMedCrossRefGoogle Scholar
  38. 38.
    Wang M, Cairncross G, Shaw E et al (2010) Cognition and quality of life after chemotherapy plus radiotherapy (RT) vs. RT for pure and mixed anaplastic oligodendrogliomas: radiation therapy oncology group trial 9402. Int J Radiat Oncol Biol Phys 77:662–669PubMedCrossRefGoogle Scholar
  39. 39.
    Taphoorn MJ, van den Bent MJ, Mauer ME et al (2007) Health-related quality of life in patients treated for anaplastic oligodendroglioma with adjuvant chemotherapy: results of a European Organisation for research and treatment of cancer randomized clinical trial. J Clin Oncol 25:5723–5730PubMedCrossRefGoogle Scholar
  40. 40.
    Steinbach JP, Blaicher HP, Herrlinger U et al (2006) Surviving glioblastoma for more than 5 years: the patient’s perspective. Neurology 66:239–242PubMedCrossRefGoogle Scholar
  41. 41.
    Hottinger AF, Yoon H, DeAngelis LM, Abrey LE (2009) Neurological outcome of long-term glioblastoma survivors. J Neurooncol 95:301–305PubMedCrossRefGoogle Scholar
  42. 42.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  43. 43.
    Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  44. 44.
    Hilverda K, Bosma I, Heimans JJ et al (2010) Cognitive functioning in glioblastoma patients during radiotherapy and temozolomide treatment: initial findings. J Neurooncol 97:89–94PubMedCrossRefGoogle Scholar
  45. 45.
    Scott JG, Suh JH, Elson P et al (2011) Aggressive treatment is appropriate for glioblastoma multiforme patients 70 years old or older: a retrospective review of 206 cases. Neuro Oncol 13:428–436PubMedCrossRefGoogle Scholar
  46. 46.
    Brandes AA, Franceschi E, Tosoni A et al (2009) Temozolomide concomitant and adjuvant to radiotherapy in elderly patients with glioblastoma: correlation with MGMT promoter methylation status. Cancer 115:3512–3518PubMedCrossRefGoogle Scholar
  47. 47.
    Minniti G, De Sanctis V, Muni R et al (2008) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J Neurooncol 88:97–103PubMedCrossRefGoogle Scholar
  48. 48.
    Sijben AE, McIntyre JB, Roldán GB et al (2008) Toxicity from chemoradiotherapy in older patients with glioblastoma multiforme. J Neurooncol 89:97–103PubMedCrossRefGoogle Scholar
  49. 49.
    A randomized phase III study of temozolomide and short-course radiation versus short-course radiation alone in the treatment of newly diagnosed glioblastoma multiforme in elderly patients. identifier: NCT00482677Google Scholar
  50. 50.
    Gállego Pérez-Larraya J, Ducray F, Chinot O et al (2011) Temozolomide in elderly patients with newly diagnosed glioblastoma and poor performance status: an ANOCEF phase II trial. J Clin Oncol 29(22):3050–3055PubMedCrossRefGoogle Scholar
  51. 51.
    Wefel JS, Cloughesy T, Zazzali JL et al (2011) Neurocognitive function in patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 13:660–668PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of NeurologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations