Journal of Neuro-Oncology

, Volume 106, Issue 3, pp 519–529 | Cite as

Downregulation of KIF23 suppresses glioma proliferation

  • Satoshi Takahashi
  • Noemi Fusaki
  • Shigeki Ohta
  • Yoshihiro Iwahori
  • Yukihiko Iizuka
  • Kohei Inagawa
  • Yutaka Kawakami
  • Kazunari Yoshida
  • Masahiro Toda
Laboratory Investigation - Human/Animal Tissue


To identify therapeutic molecular targets for glioma, we performed modified serological identification of antigens by recombinant complementary DNA (cDNA) expression cloning using sera from a mouse glioma model. Two clones, kinesin family member 23 (Kif23) and structural maintenance of chromosomes 4 (Smc4), were identified as antigens through immunological reaction with sera from mice harboring synergic GL261 mouse glioma and intratumoral inoculation with a mutant herpes simplex virus. The human Kif23 homolog KIF23 is a nuclear protein that localizes to the interzone of mitotic spindles, acting as a plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. Expression analysis revealed a higher level of KIF23 expression in glioma tissues than in normal brain tissue. The introduction of small interfering RNA (siRNA) targeting KIF23 into two different glioma cell lines, U87MG and SF126, downregulated KIF23 expression, which significantly suppressed glioma cell proliferation in vitro. KIF23 siRNA-treated glioma cells exhibited larger cell bodies with two or more nuclei compared with control cells. In vivo analysis using mouse xenograft showed that KIF23 siRNA/DNA chimera-treated tumors were significantly smaller than tumors treated with control siRNA/DNA chimera. Taken together, our results indicate that downregulation of KIF23 decreases proliferation of glioma cells and that KIF23 may be a novel therapeutic target in malignant glioma.


Glioma proliferation KIF23 MKLP1 Microtube 



We thank Ms. Y. Aikawa, S. Teramoto, T. Muraki, and M. Kokubo for technical assistance. This work was supported by grants from the Ministry of Education, Science, Sports, Science, and Technology, Japan, the Keio University Grant-in-Aid for Encouragement of Young Medical Scientists to S.T., and the Keio Medical Association to S.T.


  1. 1.
    Prados MD, Levin V (2000) Biology and treatment of malignant glioma. Semin Oncol 27(3 Supplement 6):1–10Google Scholar
  2. 2.
    Takahashi S, Hirose Y, Ikeda E, Fukaya R, Kawase T (2007) Chromosome arm 1q gain associated with good response to chemotherapy in a malignant glioma case report. J Neurosurg 106(3):488–494. doi: 10.3171/jns.2007.106.3.488 PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi S, Yamada-Okabe H, Hamada K, Ohta S, Kawase T, Yoshida K, Toda M (2010) Downregulation of uPARAP mediates cytoskeletal rearrangements and decreases invasion and migration properties in glioma cells. J Neurooncol 103(2):267–276. doi: 10.1007/s11060-010-0398-z PubMedCrossRefGoogle Scholar
  4. 4.
    Tabuse M, Ohta S, Ohashi Y, Fukaya R, Misawa A, Yoshida K, Kawase T, Saya H, Thirant C, Chneiweiss H, Matsuzaki Y, Okano H, Kawakami Y, Toda M (2011) Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells. Mol Cancer 10:60. doi: 10.1186/1476-4598-10-60 PubMedCrossRefGoogle Scholar
  5. 5.
    Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359(6395):543–547. doi: 10.1038/359543a0 PubMedCrossRefGoogle Scholar
  6. 6.
    Liu X, Zhou T, Kuriyama R, Erikson RL (2004) Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J Cell Sci 117(Pt 15):3233–3246. doi: 10.1242/jcs.01173 PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu C, Bossy-Wetzel E, Jiang W (2005) Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. Biochem J 389(Pt 2):373–381. doi: 10.1042/BJ20050097 PubMedGoogle Scholar
  8. 8.
    Calligaris D, Verdier-Pinard P, Devred F, Villard C, Braguer D, Lafitte D (2010) Microtubule targeting agents: from biophysics to proteomics. Cell Mol Life Sci 67(7):1089–1104. doi: 10.1007/s00018-009-0245-6 PubMedCrossRefGoogle Scholar
  9. 9.
    Vasiliev JM, Gelfand IM, Domnina LV, Ivanova OY, Komm SG, Olshevskaja LV (1970) Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 24(3):625–640PubMedGoogle Scholar
  10. 10.
    Kline-Smith SL, Walczak CE (2004) Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol Cell 15(3):317–327. doi: 10.1016/j.molcel.2004.07.012 PubMedCrossRefGoogle Scholar
  11. 11.
    Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3(1):E28–E34. doi: 10.1038/35050669 PubMedCrossRefGoogle Scholar
  12. 12.
    Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943PubMedCrossRefGoogle Scholar
  13. 13.
    Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, Juni A, Saigo K (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 36(7):2136–2151. doi: 10.1093/nar/gkn042 PubMedCrossRefGoogle Scholar
  14. 14.
    National Cancer Institute (2005) REMBRANDT home page. Accessed July 7, 2011
  15. 15.
    Seguin L, Liot C, Mzali R, Harada R, Siret A, Nepveu A, Bertoglio J (2009) CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase. Mol Cell Biol 29(2):570–581. doi: 10.1128/MCB.01275-08 PubMedCrossRefGoogle Scholar
  16. 16.
    Li WM, Webb SE, Chan CM, Miller AL (2008) Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos. Dev Biol 316(2):228–248. doi: 10.1016/j.ydbio.2008.01.027 PubMedCrossRefGoogle Scholar
  17. 17.
    Neef R, Klein UR, Kopajtich R, Barr FA (2006) Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr Biol 16(3):301–307. doi: 10.1016/j.cub.2005.12.030 PubMedCrossRefGoogle Scholar
  18. 18.
    Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J (2002) CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156(5):783–790. doi: 10.1083/jcb.200109090 PubMedCrossRefGoogle Scholar
  19. 19.
    Chen MC, Zhou Y, Detrich HW 3rd (2002) Zebrafish mitotic kinesin-like protein 1 (Mklp1) functions in embryonic cytokinesis. Physiol Genomics 8(1):51–66. doi: 10.1152/physiolgenomics.00042.2001 PubMedGoogle Scholar
  20. 20.
    Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E (2009) Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10:136. doi: 10.1186/1471-2105-10-136 PubMedCrossRefGoogle Scholar
  21. 21.
    The UniProt Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39 (database issue):D214–219. doi: 10.1093/nar/gkq1020
  22. 22.
    Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92(25):11810–11813PubMedCrossRefGoogle Scholar
  23. 23.
    Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94(5):1914–1918PubMedCrossRefGoogle Scholar
  24. 24.
    Ayyoub M, Pignon P, Dojcinovic D, Raimbaud I, Old LJ, Luescher I, Valmori D (2010) Assessment of vaccine-induced CD4 T cell responses to the 119–143 immunodominant region of the tumor-specific antigen NY-ESO-1 using DRB1*0101 tetramers. Clin Cancer Res 16(18):4607–4615. doi: 10.1158/1078-0432.CCR-10-1485 PubMedCrossRefGoogle Scholar
  25. 25.
    Jager E, Karbach J, Gnjatic S, Neumann A, Bender A, Valmori D, Ayyoub M, Ritter E, Ritter G, Jager D, Panicali D, Hoffman E, Pan L, Oettgen H, Old LJ, Knuth A (2006) Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci USA 103(39):14453–14458. doi: 10.1073/pnas.0606512103 PubMedCrossRefGoogle Scholar
  26. 26.
    Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O’Neill D, Pavlick A, Escalon JB, Cruz CM, Angiulli A, Angiulli F, Mears G, Vogel SM, Pan L, Jungbluth AA, Hoffmann EW, Venhaus R, Ritter G, Old LJ, Ayyoub M (2007) Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci USA 104(21):8947–8952. doi: 10.1073/pnas.0703395104 PubMedCrossRefGoogle Scholar
  27. 27.
    Ueda R, Iizuka Y, Yoshida K, Kawase T, Kawakami Y, Toda M (2004) Identification of a human glioma antigen, SOX6, recognized by patients’ sera. Oncogene 23(7):1420–1427. doi: 10.1038/sj.onc.1207252 PubMedCrossRefGoogle Scholar
  28. 28.
    Iizuka Y, Kojima H, Kobata T, Kawase T, Kawakami Y, Toda M (2006) Identification of a glioma antigen, GARC-1, using cytotoxic T lymphocytes induced by HSV cancer vaccine. Int J Cancer 118(4):942–949. doi: 10.1002/ijc.21432 PubMedCrossRefGoogle Scholar
  29. 29.
    Boone CW, Paranjpe M, Orme T, Gillette R (1974) Virus-augmented tumor transplantation antigens: evidence for a helper antigen mechanism. Int J Cancer 13(4):543–551PubMedCrossRefGoogle Scholar
  30. 30.
    Freedman RS, Bowen JM, Herson JH, Wharton JT, Edwards CL, Rutledge FN (1983) Immunotherapy for vulvar carcinoma with virus-modified homologous extracts. Obstet Gynecol 62(6):707–714PubMedGoogle Scholar
  31. 31.
    Cassel WA, Murray DR, Phillips HS (1983) A phase II study on the postsurgical management of Stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer 52(5):856–860PubMedCrossRefGoogle Scholar
  32. 32.
    Kobayashi H, Gotohda E, Hosokawa M, Kodama T (1975) Inhibition of metastasis in rats immunized with xenogenized autologous tumor cells after excision of the primary tumor. J Natl Cancer Inst 54(4):997–999PubMedGoogle Scholar
  33. 33.
    Toda M, Martuza RL, Kojima H, Rabkin SD (1998) In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic antitumor activity. J Immunol 160(9):4457–4464PubMedGoogle Scholar
  34. 34.
    Toda M, Rabkin SD, Kojima H, Martuza RL (1999) Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 10(3):385–393. doi: 10.1089/10430349950018832 PubMedCrossRefGoogle Scholar
  35. 35.
    Toda M, Iizuka Y, Kawase T, Uyemura K, Kawakami Y (2002) Immuno-viral therapy of brain tumors by combination of viral therapy with cancer vaccination using a replication-conditional HSV. Cancer Gene Ther 9(4):356–364. doi: 10.1038/sj.cgt.7700446 PubMedCrossRefGoogle Scholar
  36. 36.
    Endo T, Toda M, Watanabe M, Iizuka Y, Kubota T, Kitajima M, Kawakami Y (2002) In situ cancer vaccination with a replication-conditional HSV for the treatment of liver metastasis of colon cancer. Cancer Gene Ther 9(2):142–148. doi: 10.1038/sj.cgt.7700407 PubMedCrossRefGoogle Scholar
  37. 37.
    Iizuka Y, Suzuki A, Kawakami Y, Toda M (2004) Augmentation of antitumor immune responses by multiple intratumoral inoculations of replication-conditional HSV and interleukin-12. J Immunother 27(2):92–98PubMedCrossRefGoogle Scholar
  38. 38.
    Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30(9):2394–2400PubMedGoogle Scholar
  39. 39.
    O I Blaszczyk-Thurin M, Shen CT, Ertl HC (2003) A DNA vaccine expressing tyrosinase-related protein-2 induces T-cell-mediated protection against mouse glioblastoma. Cancer Gene Ther 10(9):678–688. doi: 10.1038/sj.cgt.7700620 CrossRefGoogle Scholar
  40. 40.
    Plautz GE, Touhalisky JE, Shu S (1997) Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 178(2):101–107. doi: 10.1006/cimm.1997.1140 PubMedCrossRefGoogle Scholar
  41. 41.
    Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T, Yoshida J (2001) Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 50(9):463–468PubMedCrossRefGoogle Scholar
  42. 42.
    Liu X, Erikson RL (2007) The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem Biophys Res Commun 353(4):960–964. doi: 10.1016/j.bbrc.2006.12.142 PubMedCrossRefGoogle Scholar
  43. 43.
    Rowinsky EK, Calvo E (2006) Novel agents that target tublin and related elements. Semin Oncol 33(4):421–435. doi: 10.1053/j.seminoncol.2006.04.006 PubMedCrossRefGoogle Scholar
  44. 44.
    Parness J, Horwitz SB (1981) Taxol binds to polymerized tubulin in vitro. J Cell Biol 91(2 Pt 1):479–487Google Scholar
  45. 45.
    Derry WB, Wilson L, Jordan MA (1995) Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34(7):2203–2211PubMedCrossRefGoogle Scholar
  46. 46.
    Dhamodharan R, Jordan MA, Thrower D, Wilson L, Wadsworth P (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol Biol Cell 6(9):1215–1229PubMedGoogle Scholar
  47. 47.
    Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 84(1):265–269PubMedCrossRefGoogle Scholar
  48. 48.
    Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798. doi: 10.1158/0008-5472.can-08-2428 PubMedCrossRefGoogle Scholar
  49. 49.
    Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3(3):199–204. doi: 10.1038/nmeth854 PubMedCrossRefGoogle Scholar
  50. 50.
    Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13(3):494–505. doi: 10.1016/j.ymthe.2005.11.002 PubMedCrossRefGoogle Scholar
  51. 51.
    Ueyama K, Ikeda K, Sato W, Nakasato N, Horie-Inoue K, Takeda S, Inoue S (2010) Knockdown of Efp by DNA-modified small interfering RNA inhibits breast cancer cell proliferation and in vivo tumor growth. Cancer Gene Ther 17(9):624–632. doi: 10.1038/cgt.2010.19 PubMedCrossRefGoogle Scholar
  52. 52.
    Nogawa M, Yuasa T, Kimura S, Tanaka M, Kuroda J, Sato K, Yokota A, Segawa H, Toda Y, Kageyama S, Yoshiki T, Okada Y, Maekawa T (2005) Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest 115(4):978–985. doi: 10.1172/jci23043 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Satoshi Takahashi
    • 1
  • Noemi Fusaki
    • 2
  • Shigeki Ohta
    • 2
    • 3
  • Yoshihiro Iwahori
    • 2
  • Yukihiko Iizuka
    • 2
  • Kohei Inagawa
    • 2
  • Yutaka Kawakami
    • 3
  • Kazunari Yoshida
    • 1
  • Masahiro Toda
    • 1
    • 2
  1. 1.Department of NeurosurgeryKeio University, School of MedicineShinjuku-ku, TokyoJapan
  2. 2.Neuro-immunology Research GroupKeio University, School of MedicineTokyoJapan
  3. 3.Division of Cellular Signaling, Institute for Advanced Medical ResearchKeio University, School of MedicineTokyoJapan

Personalised recommendations