Journal of Neuro-Oncology

, Volume 103, Issue 3, pp 713–717 | Cite as

Differential diagnosis by unenhanced FLAIR T2-weighted magnetic resonance images between solitary high grade gliomas and cerebral metastases appearing as contrast-enhancing cortico-subcortical lesions

  • Carmine Franco Muccio
  • Annachiara Tarantino
  • Gennaro Esposito
  • Alfonso Cerase
Clinical Study – Patient Study


The aim was to assess the value of unenhanced fluid-attenuated inversion recovery T2-weighted sequences (FLAIR-T2) in the differential diagnosis between solitary high-grade gliomas (HGG) and cerebral metastases (CM) appearing as contrast-enhancing cortico-subcortical lesions of the brain. In 69 patients with a contrast-enhancing cortico-subcortical brain lesion (43 HGG, and 26 CM), unenhanced FLAIR-T2 and gadolinium-enhanced FLAIR T1-weighted (Gd-FLAIR-T1) axial images have been reviewed for the involvement of the cortex adjacent to the contrast-enhancing lesion. In 27 (62.79%) out of 43 HGG, and 3 (11.53%) out of 26 CM, the cortex adjacent to the contrast-enhancing lesion showed high signal intensity on unenhanced FLAIR-T2 without enhancement at Gd-FLAIR-T1. Fischer’s exact probability test was P = 0.0003 when applied to HGG versus CM categories, indicating a significant difference. The high signal intensity on unenhanced FLAIR-T2 without gadolinium-enhancement of the cortex adjacent to the enhancing lesion is more frequently associated with HGG than CM.


Cerebral metastases Fluid-attenuated inversion recovery Gadolinium-enhancement High-grade gliomas 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Barnard RO, Geddes JF (1987) The incidence of multifocal gliomas: a histologic study of large hemisphere section. Cancer 60:1519–1531PubMedCrossRefGoogle Scholar
  2. 2.
    Schiff D (2001) Single brain metastasis. Curr Treat Options Neurol 3:89–99PubMedCrossRefGoogle Scholar
  3. 3.
    Sze G, Milano E, Johnson C, Heier L (1990) Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791PubMedGoogle Scholar
  4. 4.
    Hutter A, Schwetye KE, Bierhals AJ, McKinstry RC (2003) Brain neoplasms: epidemiology, diagnosis, and prospects for cost-effective imaging. Neuroimaging Clin N Am 13:237–250PubMedCrossRefGoogle Scholar
  5. 5.
    Young GS (2007) Advanced MRI of adult brain tumors. Neurol Clin 25:947–973PubMedCrossRefGoogle Scholar
  6. 6.
    Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721PubMedCrossRefGoogle Scholar
  7. 7.
    Chiang IC, Kuo YT, Lu CY, Yeung KW, Lin WC, Sheu FO, Liu GC (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imaging. Neuroradiology 46:619–627PubMedCrossRefGoogle Scholar
  8. 8.
    Opstad KS, Murphy MM, Wilkins PR, Bell BA, Griffiths JR, Howe FA (2004) Differentiation of metastases from high-grade gliomas using short echo time 1H spectroscopy. J Magn Reson Imaging 20:187–192PubMedCrossRefGoogle Scholar
  9. 9.
    Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I (2005) Assessment of diagnostic accuracy of perfusion mr imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199PubMedGoogle Scholar
  10. 10.
    Cha S, Lupo JM, Chen MH, Lamborn KR, McDermott MW, Berger MS, Nelson SJ, Dillon WP (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion mr imaging. AJNR Am J Neuroradiol 28:1078–1084PubMedCrossRefGoogle Scholar
  11. 11.
    Young GS, Setayesh K (2009) Spin-eco echo-planar perfusion mr imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol 29:1805–2000Google Scholar
  12. 12.
    Scarabino T, Popolizio T, Trojsi F, Giannatempo G, Pollice S, Maggialetti N, Carriero A, Di Costanzo A, Tedeschi G, Salvolini U (2009) Role of advanced MR imaging modalities in diagnosing cerebral gliomas. Radiol Med 114:448–460PubMedCrossRefGoogle Scholar
  13. 13.
    Wang S, Kim S, Chawla S, Wolf RL, Zhang WG, O’Rourke DM, Judy KD, Melhem ER, Poptani H (2009) Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. Neuroimage 44:653–660PubMedCrossRefGoogle Scholar
  14. 14.
    De Coene B, Hajnal JV, Gatehouse P, Longmore DB, White SJ, Oatridge A, Pennock JM, Young IR, Bydder GM (1992) MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 13:1555–1564PubMedGoogle Scholar
  15. 15.
    Essig M, Hawighorst H, Schoenberg SO, Engenhart-Cabillic R, Fuss M, Debus J, Zuna I, Knopp MV, van Kaick G (1998) Fast fluid-attenuated inversion-recovery (FLAIR) MRI in the assessment of intraaxial brain tumors. J Magn Reson Imaging 8:789–798PubMedCrossRefGoogle Scholar
  16. 16.
    Okubo T, Hayashi N, Shirouzu I, Abe O, Aoki S, Wada A, Ohtomo K, Sasaki Y (1998) Detection of brain metastasis: comparison of Turbo-FLAIR imaging, T2-weighted imaging and double-dose gadolinium-enhanced MR imaging. Radiat Med 16:273–281PubMedGoogle Scholar
  17. 17.
    Okuda T, Korogi Y, Shigematsu Y, Sugahara T, Hirai T, Ikushima I, Liang L, Takahashi M (1999) Brain lesions: when should fluid-attenuated inversion-recovery sequences be used in MR evaluation? Radiology 212:793–798PubMedGoogle Scholar
  18. 18.
    Husstedt HW, Sickert M, Köstler H, Haubitz B, Becker H (2000) Diagnostic value of the fast-FLAIR sequence in MR imaging of intracranial tumors. Eur Radiol 10:745–752PubMedCrossRefGoogle Scholar
  19. 19.
    Singh SK, Agris JM, Leeds NE, Ginsberg LE (2000) Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. Radiology 217:50–53PubMedGoogle Scholar
  20. 20.
    Aprile I, Guiducci A, Italiani M et al (2001) Caratterizzazione con RM delle pseudocisti necrotiche dei glioblastomi multiformi per mezzo delle sequenze FLAIR post contrasto. Risultati preliminari. Riv Neuroradiol 14(Sup. 3):15–18Google Scholar
  21. 21.
    Bynevelt M, Britton J, Seymour H, MacSweeney E, Thomas N, Sandhu K (2001) FLAIR imaging in the follow-up of low-grade gliomas: time to dispense with the dual-echo? Neuroradiology 43:129–133PubMedCrossRefGoogle Scholar
  22. 22.
    Essig M, Metzner R, Bonsanto M, Hawighorst H, Debus J, Tronnier V, Knopp MV, van Kaick G (2001) Postoperative fluid-attenuated inversion recovery MR imaging of cerebral gliomas: initial results. Eur Radiol 11:2004–2010PubMedCrossRefGoogle Scholar
  23. 23.
    Mascott CR, Summers LE (2007) Image fusion of fluid-attenuated inversion recovery magnetic resonance imaging sequences for surgical image guidance. Surg Neurol 67:589–603 discussion 603PubMedCrossRefGoogle Scholar
  24. 24.
    Essig M, Knopp MV, Schoenberg SO, Hawighorst H, Wenz F, Debus J, van Kaick G (1999) Cerebral gliomas and metastases: assessment with contrast-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 210:551–557PubMedGoogle Scholar
  25. 25.
    Ercan N, Gultekin S, Celik H, Tali TE, Oner YA, Erbas G (2004) Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am J Neuroradiol 25:761–765PubMedGoogle Scholar
  26. 26.
    Kremer S, Abu Eid M, Bierry G, Bogorin A, Koob M, Dietemann JL, Fruehlich S (2006) Accuracy of delayed post-contrast FLAIR MR imaging for the diagnosis of leptomeningeal infectious or tumoral diseases. J Neuroradiol 33:285–291PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou ZR, Shen TZ, Chen XR, Peng WJ (2006) Diagnostic value of contrast-enhanced fluid-attenuated inversion-recovery MRI for intracranial tumors in comparison with post-contrast T1W spin-echo MRI. Chin Med J (Engl) 119:467–473Google Scholar
  28. 28.
    Terae S, Yoshida D, Kudo K, Tha KK, Fujino M, Miyasaka K (2007) Contrast-enhanced FLAIR imaging in combination with pre- and postcontrast magnetization transfer T1-weighted imaging: usefulness in the evaluation of brain metastases. J Magn Reson Imaging 25:479–487PubMedCrossRefGoogle Scholar
  29. 29.
    Aprile I, Giorgi C, Guiducci A et al (2008) Characterization of glioblastoma by contrast-enhanced Flair sequence. The Neuroradiol J 21:196–203Google Scholar
  30. 30.
    Tang YM, Ngai S, Stuckey S (2006) The solitary enhancing cerebral lesion: can FLAIR aid the differentiation between gliomi and metastasis? AJNR Am J Neuroradiol 27:609–611PubMedGoogle Scholar
  31. 31.
    Stuckey SL, Wijedeera R (2008) Multicentric/multifocal cerebral lesions: can fluid-attenuated inversion recovery aid the differentiation between glioma and metastases? J Med Imaging Radiat Oncol 52:134–139PubMedCrossRefGoogle Scholar
  32. 32.
    Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. IARC, LyonGoogle Scholar
  33. 33.
    Bakshi R, Ariyaratana S, Benedict RH, Jacobs L (2001) Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 58:742–748PubMedCrossRefGoogle Scholar
  34. 34.
    Toyoda K, Ida M, Fukuda K (2001) Fluid-attenuated inversion recovery intraarterial signal: an early sign of hyperacute cerebral ischemia. AJNR Am J Neuroradiol 22:1021–1029PubMedGoogle Scholar
  35. 35.
    Essig M, Schoenberg SO, Debus J, van Kaick G (2000) Disappearance of tumor contrast on contrast-enhanced FLAIR imaging of cerebral gliomas. Magn Reson Imaging 18:513–518PubMedCrossRefGoogle Scholar
  36. 36.
    Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasm. J Neurosurg 66:865–874PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang M, Olsson Y (1997) Hematogenous metastases of the human brain-characteristics of peritumoral brain changes: a review. J Neurooncol 35:81–89PubMedCrossRefGoogle Scholar
  38. 38.
    Baumert BG, Rutten I, Dehing-Oberije C, Twijnstra A, Dirx MJ, Debougnoux-Huppertz RM, Lambin P, Kubat B (2006) A pathology-based substrate for target definition in radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 66:187–194PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Carmine Franco Muccio
    • 1
  • Annachiara Tarantino
    • 2
  • Gennaro Esposito
    • 1
  • Alfonso Cerase
    • 3
  1. 1.Unit of Neuroradiology, Department of NeurosciencesAzienda Ospedaliera di Rilievo Nazionale “Gaetano Rummo”BeneventoItaly
  2. 2.Unit of Experimental and Functional Neuroradiology, Department of Diagnostic Imaging, IRCCS Istituto Neurologico Mediterraneo NeuromedPozzilli (Isernia), and Centro DITAR srl Radiologia Diagnostica MedicaBeneventoItaly
  3. 3.Unit NINT Neuroimaging and Neurointervention, Deparment of NeurosciencesAzienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”SienaItaly

Personalised recommendations