Skip to main content
Log in

Impaired hippocampal synaptic plasticity in C6 glioma-bearing rats

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

For many glioblastoma multiforme patients, cognitive deficits are part of the disease process. In this study we attempted to determine the role of synaptic plasticity and glutamate (Glu) in C6 glioma-bearing rats. Male Sprague–Dawley (SD) rats were subjected to tumor implantation in the right caudate putamen nucleus. At 17 days after tumor implantation, animals were exposed to an open field test. The numbers of crossings and rearings were used as measures of exploration processes. An input/output (I/O) curve was first determined using the measurements of field excitatory postsynaptic potential (fEPSP) slope in response to a series of stimulation intensities. The short-term potentiation (STP) and long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in the CA1 region of the contralateral hippocampus to the tumor were recorded. The glutamate and γ-aminobutyric acid (GABA) content of contralateral hippocampus were quantified by high-performance liquid chromatography (HPLC). C6 glioma-bearing rats showed a trend for a rightward shift of input/output relationship and significant deficits in maintenance of STP and LTP. Quantitative analysis by HPLC of glutamate and γ-aminobutyric acid revealed that Glu concentration and Glu/GABA ratio were increased significantly in contralateral hippocampus, suggesting impairment of excitatory and inhibitory synaptic transmission. The results suggest that the neurocognitive deficits in C6 glioma-bearing rats may be mediated via profound changes in neuroplasticity and elevated Glu concentration and Glu/GABA ratio in hippocampus area of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sathornsumetee S, Rich JN (2006) New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 6:1087–1104

    Article  PubMed  CAS  Google Scholar 

  2. Kayl AE, Meyers CA (2003) Does brain tumor histology influence cognitive function? Neuro Oncol 5:255–260

    Article  PubMed  Google Scholar 

  3. Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3:159–168

    Article  PubMed  Google Scholar 

  4. Foster TC (1999) Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Brain Res Rev 30:236–249

    Article  PubMed  CAS  Google Scholar 

  5. Lante F, de Jesus Ferreira MC, Guiramand J, Recasens M, Vignes M (2006) Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Hippocampus 16:345–360

    Article  PubMed  CAS  Google Scholar 

  6. Quan MN, Tian YT, Xu KH, Zhang T, Yang Z (2010) Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience 169:214–222

    Article  PubMed  CAS  Google Scholar 

  7. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  8. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  9. Malenka RC, Nicoll RA (1999) Long-term potentiation–a decade of progress? Science 285:1870–1874

    Article  PubMed  CAS  Google Scholar 

  10. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  PubMed  CAS  Google Scholar 

  11. Schmid AW, Lynch MA, Herron CE (2009) The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus 19:670–676

    Article  PubMed  CAS  Google Scholar 

  12. Su Z, Han D, Sun B, Qiu J, Li Y, Li M, Zhang T, Yang Z (2009) Heat stress preconditioning improves cognitive outcome after diffuse axonal injury in rats. J Neurotrauma 26:1695–1706

    Article  PubMed  Google Scholar 

  13. Bao G, Kang L, Li H, Li Y, Pu L, Xia P, Ma L, Pei G (2007) Morphine and heroin differentially modulate in vivo hippocampal LTP in opiate-dependent rat. Neuropsychopharmacology 32:1738–1749

    Article  PubMed  CAS  Google Scholar 

  14. Zhang Y, Cai GE, Yang Q, Lu QC, Li ST, Ju G (2010) Time-dependent changes in learning ability and induction of long-term potentiation in the lithium-pilocarpine-induced epileptic mouse model. Epilepsy Behav 17:448–454

    Article  PubMed  Google Scholar 

  15. de Oliveira MS, Cechim G, Braganhol E, Santos DG, Meurer L, de Castro CG Jr, Brunetto AL, Schwartsmann G, Battastini AM, Lenz G, Roesler R, Lenz G, Roesler R (2009) Anti-proliferative effect of the gastrin-release peptide receptor antagonist RC-3095 plus temozolomide in experimental glioblastoma models. J Neurooncol 93:191–201

    Article  PubMed  Google Scholar 

  16. Cao J, Chen N, Xu T, Xu L (2004) Stress-facilitated LTD induces output plasticity through synchronized-spikes and spontaneous unitary discharges in the CA1 region of the hippocampus. Neurosci Res 49:229–239

    Article  PubMed  Google Scholar 

  17. Leung LS (1980) Behavior-dependent evoked potentials in the hippocampal CA1 region of the rat. I. Correlation with behavior and EEG. Brain Res 198:95–117

    Article  PubMed  CAS  Google Scholar 

  18. Carlsson G, Gullberg B, Hafstrom L (1983) Estimation of liver tumor volume using different formulas—an experimental study in rats. J Cancer Res Clin Oncol 105:20–23

    Article  PubMed  CAS  Google Scholar 

  19. Leong AS, Milios J (1990) Accelerated immunohistochemical staining by microwaves. J Pathol 161:327–334

    Article  PubMed  CAS  Google Scholar 

  20. Kaye AH, Morstyn G, Gardner I, Pyke K (1986) Development of a xenograft glioma model in mouse brain. Cancer Res 46:1367–1373

    PubMed  CAS  Google Scholar 

  21. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310:257–270

    Article  PubMed  CAS  Google Scholar 

  22. Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27

    Article  PubMed  CAS  Google Scholar 

  23. VanElzakker M, Fevurly RD, Breindel T, Spencer RL (2008) Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem 15:899–908

    Article  PubMed  Google Scholar 

  24. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  25. Moser MB, Moser EI (2000) Pretraining and the function of hippocampal long-term potentiation. Neuron 26:559–561

    Article  PubMed  CAS  Google Scholar 

  26. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  PubMed  CAS  Google Scholar 

  27. Albensi BC, Oliver DR, Toupin J, Odero G (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204:1–13

    Article  PubMed  Google Scholar 

  28. Yoon KW (1995) Glutamate effect on synaptic transmission mediates neurotoxicity in dissociated rat hippocampal neurons. Brain Res 669:320–324

    Article  PubMed  CAS  Google Scholar 

  29. Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–76

    Article  PubMed  CAS  Google Scholar 

  30. Klegeris A, Walker DG, McGeer PL (1997) Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells. J Neuroimmunol 78:152–161

    Article  PubMed  CAS  Google Scholar 

  31. Behrens PF, Langemann H, Strohschein R, Draeger J, Hennig J (2000) Extracellular glutamate and other metabolites in and around RG2 rat glioma: an intracerebral microdialysis study. J Neurooncol 47:11–22

    Article  PubMed  CAS  Google Scholar 

  32. Marder CP, Buonomano DV (2003) Differential effects of short- and long-term potentiation on cell firing in the CA1 region of the hippocampus. J Neurosci 23:112–121

    PubMed  CAS  Google Scholar 

  33. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (30870827, 31070964), the “111” Project (B08011) and TRPAFAT (10jczdjc19100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Yang or Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Yy., Liu, Sc., Yang, Z. et al. Impaired hippocampal synaptic plasticity in C6 glioma-bearing rats. J Neurooncol 103, 469–477 (2011). https://doi.org/10.1007/s11060-010-0447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0447-7

Keywords

Navigation