Journal of Neuro-Oncology

, Volume 102, Issue 1, pp 9–18 | Cite as

Helianthin induces antiproliferative effect on human glioblastoma cells in vitro

  • Oana Alexandru
  • Laura Dragutescu
  • Ligia Tataranu
  • Vasile Ciubotaru
  • Ani Sevastre
  • Ada Maria Georgescu
  • Oana Purcaru
  • Suzana Danoiu
  • L. Magnus Bäcklund
  • Anica Dricu
Laboratory Investigation - Human/Animal Tissue


A major focus of brain cancer research today is to translate understanding of glioma biology into advances in treatment, by exploring the potential of target therapy. Here we investigated the ability of three compounds belonging to the chemical class of azo dyes (methyl red, methyl yellow, and helianthin) to inhibit glioblastoma (GB) cell growth in vitro. Our results showed that helianthin induced cytotoxicity in two GB cell cultures, cell lines 18 and 38, whereas methyl red and methyl yellow were not cytotoxic. The effect of helianthin on EGFR, IGF-1R, and their common intracellular signaling via PI3-K and ERK1/2 was also analyzed. Treatment with helianthin down-regulated EGFR and IGF-1R activity in both cell lines. Helianthin treatment blocked ERK1/2 phosphorylation without affecting PI3K activity in cell line 18 and reduced both PI3K and ERK1/2 in GB 38 cell line. The cell death was accompanied by degradation of PARP without affecting BCL2 expression in both GB cell cultures. Because of the genetic heterogeneity of malignant gliomas, we tested the effect of helianthin on other two primary GB lines (11 and 15) and two early-passage GB cultures (BT1GB and BT2GB), to assess the general nature of the anti-tumor effect of the drug in GB cells. We found that helianthin treatment induced cell death in all the GB cell cultures analyzed. To our knowledge, this is the first report indicating that helianthin can reduce GB cell growth.


Helianthin Glioblastoma Receptor tyrosine kinases 



The Fifth Framework Programme Grant (contract number QLGA-CT-2000-60005); CNMP 41-063 Bucharest, Medico Science SRL.


  1. 1.
    CBTRUS (2006) Primary brain tumors in the United States, 1998–2002. Central Brain Tumor Registry of the United StatesGoogle Scholar
  2. 2.
    Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL (2007) Epidemiology of brain tumors. Neurol Clin 25:867–890 (vii)CrossRefPubMedGoogle Scholar
  3. 3.
    CBTRUS (2000–2004.) Primary brain tumors in the United States, 1998–2002. Central Brain Tumor Registry of the United StatesGoogle Scholar
  4. 4.
    Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225CrossRefPubMedGoogle Scholar
  5. 5.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefPubMedGoogle Scholar
  6. 6.
    Zwick E, Bange J, Ullrich A (2002) Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med 8:17–23CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315CrossRefPubMedGoogle Scholar
  8. 8.
    Hubbard SR (2004) Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell Biol 5:464–471CrossRefPubMedGoogle Scholar
  9. 9.
    Rendu F, Eldor A, Grelac F, Levy-Toledano S, Levitzki A (1990) Tyrosine kinase blockers: new platelet activation inhibitors. Blood Coagul Fibrinolysis 1:713–716PubMedGoogle Scholar
  10. 10.
    Levitzki A (1990) Tyrphostins–potential antiproliferative agents and novel molecular tools. Biochem Pharmacol 40:913–918CrossRefPubMedGoogle Scholar
  11. 11.
    Kissau L, Stahl P, Mazitschek R, Giannis A, Waldmann H (2003) Development of natural product-derived receptor tyrosine kinase inhibitors based on conservation of protein domain fold. J Med Chem 46:2917–2931CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Obeidi FA, Lam KS (2000) Development of inhibitors for protein tyrosine kinases. Oncogene 19:5690–5701CrossRefPubMedGoogle Scholar
  13. 13.
    Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA et al (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:133–142CrossRefPubMedGoogle Scholar
  14. 14.
    Carapancea M, Alexandru O, Fetea AS, Dragutescu L, Castro J et al (2008) Growth factor receptors signaling in glioblastoma cells: therapeutic implications. J Neurooncol 92(2):137–147CrossRefPubMedGoogle Scholar
  15. 15.
    Wen PY, Kesari S, Drappatz J (2006) Malignant gliomas: strategies to increase the effectiveness of targeted molecular treatment. Expert Rev Anticancer Ther 6:733–754CrossRefPubMedGoogle Scholar
  16. 16.
    Nathoo N, Goldlust S, Vogelbaum MA (2004) Epidermal growth factor receptor antagonists: novel therapy for the treatment of high-grade gliomas. Neurosurgery 54:1480–1488 (discussion 1488–1489)CrossRefPubMedGoogle Scholar
  17. 17.
    Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF et al (1991) Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172PubMedGoogle Scholar
  18. 18.
    Kurihara M, Ochi A, Tokunaga Y, Kawaguchi T, Niwa M et al (1989) Expression of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) receptors in primary non-glial human brain tumors. No To Shinkei 41:1127–1133PubMedGoogle Scholar
  19. 19.
    Carapancea M, Cosaceanu D, Budiu R, Kwiecinska A, Tataranu L et al (2007) Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. J Neurooncol 85:245–254CrossRefPubMedGoogle Scholar
  20. 20.
    Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232CrossRefPubMedGoogle Scholar
  21. 21.
    Humphrey PA, Wong AJ, Vogelstein B, Friedman HS, Werner MH et al (1988) Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res 48:2231–2238PubMedGoogle Scholar
  22. 22.
    Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1:44–51PubMedGoogle Scholar
  23. 23.
    Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA et al (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89:2965–2969CrossRefPubMedGoogle Scholar
  24. 24.
    Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR et al (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84:6899–6903CrossRefPubMedGoogle Scholar
  25. 25.
    Agosti RM, Leuthold M, Gullick WJ, Yasargil MG, Wiestler OD (1992) Expression of the epidermal growth factor receptor in astrocytic tumours is specifically associated with glioblastoma multiforme. Virchows Arch A Pathol Anat Histopathol 420:321–325CrossRefPubMedGoogle Scholar
  26. 26.
    Schlegel J, Stumm G, Brandle K, Merdes A, Mechtersheimer G et al (1994) Amplification and differential expression of members of the erbB-gene family in human glioblastoma. J Neurooncol 22:201–207CrossRefPubMedGoogle Scholar
  27. 27.
    Humphrey PA, Wong AJ, Vogelstein B, Zalutsky MR, Fuller GN et al (1990) Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci USA 87:4207–4211CrossRefPubMedGoogle Scholar
  28. 28.
    Luwor RB, Johns TG, Murone C, Huang HJ, Cavenee WK et al (2001) Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2–7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 61:5355–5361PubMedGoogle Scholar
  29. 29.
    Johns TG, Stockert E, Ritter G, Jungbluth AA, Huang HJ et al (2002) Novel monoclonal antibody specific for the de2–7 epidermal growth factor receptor (EGFR) that also recognizes the EGFR expressed in cells containing amplification of the EGFR gene. Int J Cancer 98:398–408CrossRefPubMedGoogle Scholar
  30. 30.
    Sugawa N, Yamamoto K, Ueda S, Morita N, Kita M et al (1998) Function of aberrant EGFR in malignant gliomas. Brain Tumor Pathol 15:53–57CrossRefPubMedGoogle Scholar
  31. 31.
    Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72PubMedGoogle Scholar
  32. 32.
    Zumkeller W (1997) The effect of insulin-like growth factors on brain myelination and their potential therapeutic application in myelination disorders. Eur J Paediatr Neurol 1:91–101CrossRefPubMedGoogle Scholar
  33. 33.
    Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE (2000) The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev 21:215–244CrossRefPubMedGoogle Scholar
  34. 34.
    LeRoith D, Roberts CT Jr (2003) The insulin-like growth factor system and cancer. Cancer Lett 195:127–137PubMedGoogle Scholar
  35. 35.
    Singer CF, Hudelist G, Lamm W, Mueller R, Czerwenka K et al (2004) Expression of tyrosine kinases in human malignancies as potential targets for kinase-specific inhibitors. Endocr Relat Cancer 11:861–869CrossRefPubMedGoogle Scholar
  36. 36.
    Glick RP, Lichtor T, Unterman TG (1997) Insulin-like growth factors in central nervous system tumors. J Neurooncol 35:315–325CrossRefPubMedGoogle Scholar
  37. 37.
    El-Badry OM, Helman LJ, Chatten J, Steinberg SM, Evans AE et al (1991) Insulin-like growth factor II-mediated proliferation of human neuroblastoma. J Clin Invest 87:648–657CrossRefPubMedGoogle Scholar
  38. 38.
    Nordqvist AC, Peyrard M, Pettersson H, Mathiesen T, Collins VP et al (1997) A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas. Cancer Res 57:2611–2614PubMedGoogle Scholar
  39. 39.
    Antoniades HN, Galanopoulos T, Neville-Golden J, Maxwell M (1992) Expression of insulin-like growth factors I and II and their receptor mRNAs in primary human astrocytomas and meningiomas; in vivo studies using in situ hybridization and immunocytochemistry. Int J Cancer 50:215–222CrossRefPubMedGoogle Scholar
  40. 40.
    Gammeltoft S, Ballotti R, Kowalski A, Westermark B, Van Obberghen E (1988) Expression of two types of receptor for insulin-like growth factors in human malignant glioma. Cancer Res 48:1233–1237PubMedGoogle Scholar
  41. 41.
    Melino G, Stephanou A, Annicchiarico-Petruzzelli M, Finazzi-Agro A, Knight RA et al (1992) IGF-II mRNA expression in LI human glioblastoma cell line parallels cell growth. Neurosci Lett 144:25–28CrossRefPubMedGoogle Scholar
  42. 42.
    Trojan J, Johnson TR, Rudin SD, Ilan J, Tykocinski ML (1993) Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA. Science 259:94–97CrossRefPubMedGoogle Scholar
  43. 43.
    Morford LA, Boghaert ER, Brooks WH, Roszman TL (1997) Insulin-like growth factors (IGF) enhance three-dimensional (3D) growth of human glioblastomas. Cancer Lett 115:81–90CrossRefPubMedGoogle Scholar
  44. 44.
    Merrill MJ, Edwards NA (1990) Insulin-like growth factor-I receptors in human glial tumors. J Clin Endocrinol Metab 71:199–209CrossRefPubMedGoogle Scholar
  45. 45.
    Resnicoff M, Li W, Basak S, Herlyn D, Baserga R et al (1996) Inhibition of rat C6 glioblastoma tumor growth by expression of insulin-like growth factor I receptor antisense mRNA. Cancer Immunol Immunother 42:64–68CrossRefPubMedGoogle Scholar
  46. 46.
    Resnicoff M, Sell C, Rubini M, Coppola D, Ambrose D et al (1994) Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res 54:2218–2222PubMedGoogle Scholar
  47. 47.
    Cosaceanu D, Carapancea M, Castro J, Ekedahl J, Kanter L et al (2005) Modulation of response to radiation of human lung cancer cells following insulin-like growth factor 1 receptor inactivation. Cancer Lett 222:173–181CrossRefPubMedGoogle Scholar
  48. 48.
    Andrews DW, Resnicoff M, Flanders AE, Kenyon L, Curtis M et al (2001) Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 19:2189–2200PubMedGoogle Scholar
  49. 49.
    Mehta K, Pantazis P, McQueen T, Aggarwal BB (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8:470–481CrossRefPubMedGoogle Scholar
  50. 50.
    Hanif R, Qiao L, Shiff SJ, Rigas B (1997) Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 130:576–584CrossRefPubMedGoogle Scholar
  51. 51.
    Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20:7597–7609CrossRefPubMedGoogle Scholar
  52. 52.
    Seewald MJ, Schlager JJ, Olsen RA, Melder DC, Powis G (1989) High molecular weight dextran sulfate inhibits intracellular Ca2+ release and decreases growth factor-induced increases in intracellular free Ca2+ in Swiss 3T3 fibroblasts. Cancer Commun 1:151–156PubMedGoogle Scholar
  53. 53.
    Powis G, Seewald MJ, Melder D, Hoke M, Gratas C et al (1992) Inhibition of growth factor binding, Ca2+ signaling and cell growth by polysulfonated azo dyes related to the antitumor agent suramin. Cancer Chemother Pharmacol 31:223–228CrossRefPubMedGoogle Scholar
  54. 54.
    Chung KT, Fulk GE, Andrews AW (1978) The mutagenicity of methyl orange and metabolites produced by intestinal anaerobes. Mutat Res 58:375–379CrossRefPubMedGoogle Scholar
  55. 55.
    Chung KT (1983) The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat Res 114:269–281PubMedGoogle Scholar
  56. 56.
    Brown MADSC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324CrossRefGoogle Scholar
  57. 57.
    Ponten J, Westermark B (1978) Properties of human malignant glioma cells in vitro. Med Biol 56:184–193PubMedGoogle Scholar
  58. 58.
    Hagerstrand D, Hesselager G, Achterberg S, Wickenberg Bolin U, Kowanetz M et al (2006) Characterization of an imatinib-sensitive subset of high-grade human glioma cultures. Oncogene 25:4913–4922CrossRefPubMedGoogle Scholar
  59. 59.
    Zee Vd (2002) Anaerobic azo dye reductionGoogle Scholar
  60. 60.
    Akerfeldt S, Westin G, Jansson T (1971) Aromatic sulfonic acids as viral inhibitors. Structure-activity study using rhino, adeno 3, herpes simplex, and influenza viruses. J Med Chem 14:595–600CrossRefPubMedGoogle Scholar
  61. 61.
    Thorne HV, Clarke GF (1983) Inactivation of measles and herpes simplex viruses by trypan blue. J Gen Virol 64(Pt 6):1365–1368CrossRefPubMedGoogle Scholar
  62. 62.
    Carlberg M, Dricu A, Blegen H, Kass GE, Orrenius S et al (1996) Short exposures to tunicamycin induce apoptosis in SV40-transformed but not in normal human fibroblasts. Carcinogenesis 17:2589–2596CrossRefPubMedGoogle Scholar
  63. 63.
    Cosaceanu D, Budiu RA, Carapancea M, Castro J, Lewensohn R et al (2007) Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 26:2423–2434CrossRefPubMedGoogle Scholar
  64. 64.
    Gautam J, Schott H (1994) Interaction of anionic compounds with gelatin. I: Binding studies. J Pharm Sci 83:922–930CrossRefPubMedGoogle Scholar
  65. 65.
    Roterman I, No KT, Piekarska B, Kaszuba J, Pawlicki R et al (1993) Bis azo dyes—studies on the mechanism of complex formation with IgG modulated by heating or antigen binding. J Physiol Pharmacol 44:213–232PubMedGoogle Scholar
  66. 66.
    Katz M, Amit I, Yarden Y (2007) Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 1773:1161–1176CrossRefPubMedGoogle Scholar
  67. 67.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657CrossRefPubMedGoogle Scholar
  68. 68.
    Foulstone E, Prince S, Zaccheo O, Burns JL, Harper J et al (2005) Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J Pathol 205:145–153CrossRefPubMedGoogle Scholar
  69. 69.
    Henson ES, Gibson SB (2006) Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal 18:2089–2097CrossRefPubMedGoogle Scholar
  70. 70.
    Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40:2707–2719CrossRefPubMedGoogle Scholar
  71. 71.
    Ibrado AM, Huang Y, Fang G, Liu L, Bhalla K (1996) Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. Cancer Res 56:4743–4748PubMedGoogle Scholar
  72. 72.
    Smyth MJ, Perry DK, Zhang J, Poirier GG, Hannun YA et al (1996) prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem J 316(Pt 1):25–28PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Oana Alexandru
    • 1
  • Laura Dragutescu
    • 1
  • Ligia Tataranu
    • 2
  • Vasile Ciubotaru
    • 2
  • Ani Sevastre
    • 1
  • Ada Maria Georgescu
    • 3
  • Oana Purcaru
    • 1
  • Suzana Danoiu
    • 1
  • L. Magnus Bäcklund
    • 4
  • Anica Dricu
    • 1
  1. 1.University of Medicine and PharmacyCraiovaRomania
  2. 2.Department of NeurosurgeryBagdasar-Arseni HospitalBucharestRomania
  3. 3.SC Medico Science SRLBucharestRomania
  4. 4.Department of Oncology-Pathology, Cancer Center Karolinska and RadiumhemmetKarolinska Institute/University HospitalStockholmSweden

Personalised recommendations