Journal of Neuro-Oncology

, Volume 101, Issue 3, pp 393–403 | Cite as

Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells

  • Christian Senft
  • Maike Priester
  • Margareth Polacin
  • Katrin Schröder
  • Volker Seifert
  • Donat Kögel
  • Jakob Weissenberger
Laboratory Investigation - Human/Animal Tissue


The objective of current treatment strategies for glioblastoma (GBM) is cytoreduction. Unfortunately, the deleterious migratory and invasive behavior of glial tumors remains largely unattended. The transcription factor signal transducer and activator of transcription (STAT) 3 is known to be involved in the development and progression of many different tumor types, including malignant gliomas. Beside other biological effects, STAT3 controls cell proliferation and tissue remodeling, processes common to both wound healing and tumor dissemination. Here, we report on impeded migratory and invasive potential of five different glioblastoma cell lines after treatment with AG490, a pharmacological inhibitor of the upstream STAT3 activator Janus kinase (JAK) 2. STAT3 was constitutively activated in all the cell lines tested, and treatment with AG490 eliminated the biologically active, tyrosine705-phosphorylated form of STAT3 in a dose-dependent fashion, as determined by Western blot analysis. Inhibition of activated STAT3 was paralleled by a decrease in transcriptional expression of the STAT3 target genes MMP-2 and MMP-9, and led to reduced proteolytic activity, as determined by zymography. Accordingly, the migratory behavior of all five GBM cell lines was impeded in monolayer wound-healing assays; invasive capacity in matrigel-coated trans-well assays was also hampered by treatment with AG490. The proliferative activity of the cell lines was also significantly reduced after treatment with AG490. The effects elicited by STAT3 inhibition were observed in both PTEN-expressing and PTEN-deficient cells. Because pharmacological inhibition of the JAK-2/STAT3 signaling pathway affects not only tumor cell proliferation but also the characteristic features of malignant gliomas, i.e. migration and invasion pertinent to invariable tumor recurrence and high morbidity, our findings support the idea that STAT3 is a suitable target in the treatment of brain tumors.


Glioblastoma Migration Invasion STAT3 



Enhanced chemiluminescence




Radioimmunoprecipitation assay


Proto-oncogene, small GTPase


Proto-oncogene, non-receptor tyrosine kinase


Sodium dodecyl sulfate


Polyacrylamide gel electrophoresis


Bicinchoninic acid


Phosphatase and tensin homolog


Bovine serum albumin



The authors would like to thank C. Geist and H. Schweers, for excellent technical assistance, and M. Eberhardt, for assisting with the preparation of the figures. This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG), grant # WE 4358/1-1 to JW and DK.

Conflicts of interest statement

The authors report no conflict of interest concerning the materials or methods used in this study or the findings reported in this paper.

Supplementary material

11060_2010_273_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1083 kb)


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  2. 2.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710CrossRefPubMedGoogle Scholar
  3. 3.
    Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636CrossRefPubMedGoogle Scholar
  4. 4.
    Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114:443–458CrossRefPubMedGoogle Scholar
  5. 5.
    Dauer DJ, Ferraro B, Song L, Yu B, Mora L, Buettner R, Enkemann S, Jove R, Haura EB (2005) Stat3 regulates genes common to both wound healing and cancer. Oncogene 24:3397–3408CrossRefPubMedGoogle Scholar
  6. 6.
    Brantley EC, Benveniste EN (2008) Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 6:675–684CrossRefPubMedGoogle Scholar
  7. 7.
    Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA, Aguzzi A, Weis J (2004) IL-6 is required for glioma development in a mouse model. Oncogene 23:3308–3316CrossRefPubMedGoogle Scholar
  8. 8.
    Lo HW, Cao X, Zhu H, Ali-Osman F (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14:6042–6054CrossRefPubMedGoogle Scholar
  9. 9.
    Loeffler S, Fayard B, Weis J, Weissenberger J (2005) Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115:202–213CrossRefPubMedGoogle Scholar
  10. 10.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev 9:798–809CrossRefGoogle Scholar
  11. 11.
    Schlessinger K, Levy DE (2005) Malignant transformation but not normal cell growth depends on signal transducer and activator of transcription 3. Cancer Res 65:5828–5834CrossRefPubMedGoogle Scholar
  12. 12.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25:402–408Google Scholar
  13. 13.
    Ponce ML (2001) In vitro matrigel angiogenesis assays. In: Murray JC (ed) Angiogenesis protocols. Humana Press, Totowa, NJ, pp 205–208Google Scholar
  14. 14.
    Shingu T, Yamada K, Hara N, Moritake K, Osago H, Terashima M, Uemura T, Yamasaki T, Tsuchiya M (2003) Growth inhibition of human malignant glioma cells induced by the PI3-K-specific inhibitor. J Neurosurg 98:154–161CrossRefPubMedGoogle Scholar
  15. 15.
    Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648CrossRefPubMedGoogle Scholar
  16. 16.
    Bollrath J, Greten FR (2009) IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 10:1314–1319CrossRefPubMedGoogle Scholar
  17. 17.
    Judge A, MacLachlan I (2008) Overcoming the innate immune response to small interfering RNA. Hum Gene Ther 19:111–124CrossRefPubMedGoogle Scholar
  18. 18.
    Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ (2002) Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 21:8404–8413CrossRefPubMedGoogle Scholar
  19. 19.
    Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303CrossRefPubMedGoogle Scholar
  20. 20.
    Gu J, Li G, Sun T, Su Y, Zhang X, Shen J, Tian Z, Zhang J (2008) Blockage of the STAT3 signaling pathway with a decoy oligonucleotide suppresses growth of human malignant glioma cells. J Neurooncol 89:9–17CrossRefPubMedGoogle Scholar
  21. 21.
    Lopez-Gines C, Gil-Benso R, Benito R, Mata M, Pereda J, Sastre J, Roldan P, Gonzalez-Darder J, Cerda-Nicolas M (2008) The activation of ERK1/2 MAP kinases in glioblastoma pathobiology and its relationship with EGFR amplification. Neuropathology 28:507–515CrossRefPubMedGoogle Scholar
  22. 22.
    Huang S (2007) Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res 13:1362–1366CrossRefPubMedGoogle Scholar
  23. 23.
    Silbergeld DL, Rostomily RC, Alvord EC Jr (1991) The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of supratentorial glioblastoma in adults. J Neurooncol 10:179–185CrossRefPubMedGoogle Scholar
  24. 24.
    Wick W, Stupp R, Beule AC, Bromberg J, Wick A, Ernemann U, Platten M, Marosi C, Mason WP, van den Bent M, Weller M, Rorden C, Karnath HO (2008) A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro Oncol 10:1019–1024CrossRefPubMedGoogle Scholar
  25. 25.
    Abdulghani J, Gu L, Dagvadorj A, Lutz J, Leiby B, Bonuccelli G, Lisanti MP, Zellweger T, Alanen K, Mirtti T, Visakorpi T, Bubendorf L, Nevalainen MT (2008) Stat3 promotes metastatic progression of prostate cancer. Am J Pathol 172:1717–1728CrossRefPubMedGoogle Scholar
  26. 26.
    Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavarone A (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325Google Scholar
  27. 27.
    Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev 3:489–501CrossRefGoogle Scholar
  28. 28.
    Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S (2004) Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23:3550–3560CrossRefPubMedGoogle Scholar
  29. 29.
    de la Iglesia N, Konopka G, Lim KL, Nutt CL, Bromberg JF, Frank DA, Mischel PS, Louis DN, Bonni A (2008) Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28:5870–5878CrossRefPubMedGoogle Scholar
  30. 30.
    Shariftabrizi A, Khorramizadeh MR, Saadat F, Alimoghadam K, Safavifar F, Ebrahimkhani MR (2005) Concomitant reduction of matrix metalloproteinase-2 secretion and intracellular reactive oxygen species following anti-sense inhibition of telomerase activity in PC-3 prostate carcinoma cells. Mol Cell Biochem 273:109–116CrossRefPubMedGoogle Scholar
  31. 31.
    Kargiotis O, Chetty C, Gondi CS, Tsung AJ, Dinh DH, Gujrati M, Lakka SS, Kyritsis AP, Rao JS (2008) Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 27:4830–4840CrossRefPubMedGoogle Scholar
  32. 32.
    Munaut C, Noel A, Hougrand O, Foidart JM, Boniver J, Deprez M (2003) Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer 106:848–855CrossRefPubMedGoogle Scholar
  33. 33.
    Schaefer LK, Ren Z, Fuller GN, Schaefer TS (2002) Constitutive activation of Stat3alpha in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21:2058–2065CrossRefPubMedGoogle Scholar
  34. 34.
    Birner P, Toumangelova-Uzeir K, Natchev S, Guentchev M (2010) STAT3 tyrosine phosphorylation influences survival in glioblastoma. J Neuro Oncol. doi: 10.1007/s11060-010-0195-8

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Christian Senft
    • 1
    • 2
  • Maike Priester
    • 2
  • Margareth Polacin
    • 2
  • Katrin Schröder
    • 3
  • Volker Seifert
    • 1
  • Donat Kögel
    • 2
  • Jakob Weissenberger
    • 2
  1. 1.Department of NeurosurgeryGoethe-UniversityFrankfurtGermany
  2. 2.Experimental Neurosurgery, Neuroscience CenterGoethe-UniversityFrankfurtGermany
  3. 3.Institute of Cardiovascular PhysiologyGoethe-UniversityFrankfurtGermany

Personalised recommendations