Skip to main content

Advertisement

Log in

Clinical, dosimetric, and radiographic correlation of radiation injury involving the brainstem and the medial temporal lobes following stereotactic radiotherapy for neoplasms of central skull base

  • Clinical Study/Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Stereotactic Radiotherapy (SRT) is more commonly used for skull base tumors in conjunction with the technical development of radiation intensity modulation. Purpose of this study is to correlate clinical and radiographic characteristics of delayed radiation injury (RI) occurring around central skull base following SRT with SRT dosimetric data. Total of six patients were identified to have developed RI in the vicinity of SRT target volume out of 141 patients who received SRT in he center or near-center of the skull base. The images and medical records were retrospectively reviewed. The analysis was performed for RI location, time of development, imaging and clinical characteristics and evolution of RI and correlated with SRT dosimetric analysis using image fusion with follow-up MRI scans. Mean follow-up time was 24 ± 9 months. During the follow-up period, twelve sites of RI were found in 6 patients. They were clinically symptomatic in 4/6 patients (66.6%) at median 12.5 months after SRT. Mean time interval between SRT and detection of RI was 9 ± 3, 18.5 ± 5, and 13.5 months for brainstem, temporal lobe, and cerebellum/labyrinth lesions, respectively. All RI lesions were included in the region of high SRT doses. After steroid and symptomatic treatment, 50% of RI lesions showed complete response, and 40% showed partial response. RI can occur around the skull base because of irregular shape of target tumor, its close proximity to normal brain parenchyma, and inhomogeneity of dose distribution. Brainstem lesions occurred earlier than temporal lobe RI. The majority of the RI lesions, not mixed with the tumor in this study, showed radiographic and clinical improvement with steroid and symptomatic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ryu S, Khan M, Yin FF et al (2004) Image guided radiosurgery of head and neck cancers. Otolaryngol Head Neck Surg 30(6):690–697

    Article  Google Scholar 

  2. Ryu S, Fang YF, Rock J et al (2003) Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 97(8):2013–2018

    Article  PubMed  Google Scholar 

  3. Macdonald DR, Cascino TL, Schold SC et al (1990) Response criteria for phase II studies of malignant glioma. J Clin Oncol 8:1277–1280

    CAS  PubMed  Google Scholar 

  4. Djalilian HR, Benson AG, Ziai K et al (2007) Radiation necrosis of the brain after radiosurgery for vestibular schwannoma. Am J Otolaryng 28:338–341

    Article  Google Scholar 

  5. Monheit BE, Fiveash JB, Girkin CA et al (2004) Radionecrosis of the inferior occipital lobes with altitudinal visual field loss after gamma knife radiosurgery. J Neuroophthalmol 24(3):195–199

    PubMed  Google Scholar 

  6. Takenaka N, Imanishi T, Sasaki H et al (2003) Delayed radiation necrosis with extensive brain edema after gamma knife radiosurgery for multiple cerebral cavernous malformations: case report. Neurol Med Chir (Tokyo) 43(8):391–395

    Article  Google Scholar 

  7. Lorenzo ND, Nolletti A, Palma L et al (1978) Late cerebral radionecrosis. Surg Neurol 10(5):281–290

    CAS  PubMed  Google Scholar 

  8. Al-Mefty O, Kersh JE, Routh A et al (1990) The long-term side effects of radiation therapy for benign brain tumors in adults. J Neurosurg 73(4):502–512

    Article  CAS  PubMed  Google Scholar 

  9. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    CAS  PubMed  Google Scholar 

  10. Mullins ME, Barest GD, Schaefer PW et al (2005) Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. Am J Neuroradiol 26(8):1967–1972

    PubMed  Google Scholar 

  11. Rogers LR, Scarpace L, Gutierrez J et al (2006) Magnetic resonance imaging characteristics and histological correlates of cerebral radiation necrosis. Neurology 66(S2):335

    Google Scholar 

  12. Chong VF, Rumpel H, Aw YS et al (1999) Temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma: 1H MR spectroscopic findings. Int J Radiat Oncol Biol Phys 45:699–705

    CAS  PubMed  Google Scholar 

  13. Graves EE, Nelson SJ, Vigneron DB et al (2001) Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. Am J Neuroradiol 22:613–624

    CAS  PubMed  Google Scholar 

  14. Cha S (2003) Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 11(3):403–413

    Article  PubMed  Google Scholar 

  15. Jain R, Scarpace L, Ellika S et al (2007) First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery 61:778–787

    Article  PubMed  Google Scholar 

  16. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    CAS  PubMed  Google Scholar 

  17. Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197

    Article  CAS  PubMed  Google Scholar 

  18. Stokkel M, Stevens H, Taphoorn M et al (1999) Differentiation between recurrent brain tumour and post-radiation necrosis: the value of 201Tl SPET versus 18F-FDG PET using a dual-headed coincidence camera–a pilot study. Nucl Med Commun 20(5):411–417

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson B, Lax I, Soderman N et al (1997) Factors influencing the risk for complications following Gamma Knife radiosurgery of cerebral arteriovenous malformations. Radiother Oncol 43(3):275–280

    Article  CAS  PubMed  Google Scholar 

  20. Chin LS, Ma L, Di Biase S et al (2001) Radiation necrosis following gamma knife surgery: a case-controlled comparison of treatment parameters and long-term clinical follow up. J Neurosurg 94(6):899–904

    Article  CAS  PubMed  Google Scholar 

  21. Flickinger JC, Kondziolka D, Pollock BE et al (1997) Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys 8(3):485–490

    Google Scholar 

  22. Flickinger JC, Kondziolka D, Maitz AH et al (1998) Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys 40(2):273–278

    CAS  PubMed  Google Scholar 

  23. Flickinger JC, Kondziolka D, Lunsford LD et al (2000) Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys 46(5):1143–1148

    CAS  PubMed  Google Scholar 

  24. Voges J, Treuer H, Sturm V et al (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36(5):1055–1063

    CAS  PubMed  Google Scholar 

  25. Levegrün S, Hof H, Essig M et al (2004) Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters. Int J Radiat Oncol Biol Phys 59(3):796–808

    PubMed  Google Scholar 

  26. Wanebo JE, Kidd GA, King MC et al (2009) Hyperbaric oxygen therapy for treatment of adverse radiation effects after stereotactic radiosurgery of arteriovenous malformations: case report and review of literature. Surg Neurol 72(2):162–167

    Article  PubMed  Google Scholar 

  27. Chuba PJ, Aronin P, Bhambhani K et al (1997) Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer 80:2005–2012

    Article  CAS  PubMed  Google Scholar 

  28. Ka Leber, Eder HG, Kovac H et al (1998) Treatment of cerebral radionecrosis by hyperbaric oxygen therapy. Stereotact Funct Neurosurg 70(Suppl 1):229–236

    Google Scholar 

  29. Lynn M, Friedman WA (2007) Hyperbaric oxygen in the treatment of a radiosurgical complication: technical case report. Neurosurgery 60(3):E579

    Article  PubMed  Google Scholar 

  30. Hyperbaric and Undersea Medicine Society Indications for hyperbaric oxygen therapy. http://www.uhms.org. Accessed September 25 2009

  31. Williamson R, Kondziolka D, Kanaan H et al (2008) Adverse radiation effects after radiosurgery may benefit from oral vitamin E and Pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg 6(6):359–366

    Article  Google Scholar 

  32. Delanian S, Lefaix JL, Maisonobe T et al (2008) Significant clinical improvement in radiation-induced lumbosacral polyradiculopathy by a treatment combining pentoxifylline, tocopherol, and clodronate (Pentoclo). J Neurol Sci 275(1–2):164–166

    Article  CAS  PubMed  Google Scholar 

  33. Kim JH, Brown SL, Kolozsvary A et al (2004) Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat Res 161(2):137–142

    Article  CAS  PubMed  Google Scholar 

  34. Ryu S, Kolozsvary A, Jenrow KA et al (2007) Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J Neurooncol 82(2):119–124

    Article  CAS  PubMed  Google Scholar 

  35. Diomede L, Albani D, Sottocorno M et al (2001) In vivo anti-inflammatory effect of statins is mediated by nonsterol mevalonate products. Arterioscler Thromb Vasc Biol 21(8):1327–1332

    Article  CAS  PubMed  Google Scholar 

  36. Shishehbor MH, Brennan ML, Aviles RJ et al (2003) Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation 108(4):426–431

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Zhang ZG, Li Y et al (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53(6):743–751 (Erratum in: Ann Neurol 2005;58(5):818)

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez J, Kumar AJ, Conrad CA et al (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67(2):323–326

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schipani, S., Jain, R., Shah, K. et al. Clinical, dosimetric, and radiographic correlation of radiation injury involving the brainstem and the medial temporal lobes following stereotactic radiotherapy for neoplasms of central skull base. J Neurooncol 98, 177–184 (2010). https://doi.org/10.1007/s11060-010-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0171-3

Keywords

Navigation