Advertisement

Journal of Neuro-Oncology

, Volume 96, Issue 3, pp 331–336 | Cite as

Breast cancer brain metastases express the sodium iodide symporter

  • Corinne Renier
  • Hannes Vogel
  • Onyinye Offor
  • Chen Yao
  • Irene Wapnir
Laboratory Investigation - Human/Animal Tissue

Abstract

Breast cancer brain metastases are on the rise and their treatment is hampered by the limited entry and efficacy of anticancer drugs in this sanctuary. The sodium iodide symporter, NIS, actively transports iodide across the plasma membrane and is exploited clinically to deliver radioactive iodide into cells. As in thyroid cancers, NIS is expressed in many breast cancers including primary and metastatic tumors. In this study NIS expression was analyzed for the first time in 28 cases of breast cancer brain metastases using a polyclonal anti-NIS antibody directed against the terminal C-peptide of human NIS gene and immunohistochemical methods. Twenty-five tumors (84%) in this retrospective series were estrogen/progesterone receptor-negative and 15 (53.6%) were HER2+. Overall 21 (75%) cases and 80% of HER2 positive metastases were NIS positive. While the predominant pattern of NIS immunoreactivity is intracellular, plasma membrane immunopositivity was detected at least focally in 23.8% of NIS-positive samples. Altogether, these findings indicate that NIS expression is prevalent in breast cancer brain metastases and could have a therapeutic role via the delivery of radioactive iodide and selective ablation of tumor cells.

Keywords

Sodium iodide symporter Breast cancer brain metastases 

References

  1. 1.
    Lee YT (1983) Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol 23:175–180CrossRefPubMedGoogle Scholar
  2. 2.
    Pelletier EM, Shim B, Goodman S, Amonkar MM (2008) Epidemiology and economic burden of brain metastases among patients with primary breast cancer: results from a US claims data analysis. Breast Cancer Res Treat 108:297–305CrossRefPubMedGoogle Scholar
  3. 3.
    Crivellari D, Pagani O, Veronesi A, Lombardi D, Nole F, Thurlimann B, Hess D, Borner M, Bauer J, Martinelli G, Graffeo R, Sessa C, Goldhirsch A (2001) High incidence of central nervous system involvement in patients with metastatic or locallyadvanced breast cancer treated with epirubicin and docetaxel. Ann Oncol 12:353–356CrossRefPubMedGoogle Scholar
  4. 4.
    Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. J Clin Oncol 22:2865–2872. doi: 10.1200/JCO.2004.12.149 CrossRefPubMedGoogle Scholar
  5. 5.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684CrossRefPubMedGoogle Scholar
  6. 6.
    Lee SS, Ahn JH, Kim MK, Sym SJ, Gong G, Ahn SD, Kim SB, Kim WK (2008) Brain metastases in breast cancer: prognostic factors and management. Breast Cancer Res Treat 111:523–530CrossRefPubMedGoogle Scholar
  7. 7.
    Bendell JC, Domchek SM, Burstein HJ, Harris L, Younger J, Kuter I, Bunnell C, Rue M, Gelman R, Winer E (2003) Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97:2972–2977CrossRefPubMedGoogle Scholar
  8. 8.
    Shmueli E, Wigler N, Inbar M (2004) Central nervous system progression among patients with metastatic breast cancer responding to trastuzumab treatment. Eur J Cancer 40:379–382CrossRefPubMedGoogle Scholar
  9. 9.
    Gabos Z, Sinha R, Hanson J, Chauhan N, Hugh J, Mackey JR, Abdulkarim B (2006) Prognostic significance of human epidermal growth factor receptor positivity for the development of brain metastasis after newly diagnosed breast cancer. J Clin Oncol 24:5658–5663. doi: 10.1200/JCO.2006.07.0250 CrossRefPubMedGoogle Scholar
  10. 10.
    Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13:1648–1655. doi: 10.1158/1078-0432.CCR-06-2478 CrossRefPubMedGoogle Scholar
  11. 11.
    Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, Roche H, Liu MC, Greil R, Ciruelos E, Loibl S, Gori S, Wardley A, Yardley D, Brufsky A, Blum JL, Rubin SD, Dharan B, Steplewski K, Zembryki D, Oliva C, Roychowdhury D, Paoletti P, Winer EP (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459CrossRefPubMedGoogle Scholar
  12. 12.
    Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379:458–460CrossRefPubMedGoogle Scholar
  13. 13.
    Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, Deng HF, Amenta PS, Fineberg S, Pestell RG, Carrasco N (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 6:871–878CrossRefPubMedGoogle Scholar
  14. 14.
    Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, Jhiang SM (1996) Cloning of the human sodium lodide symporter. Biochem Biophys Res Commun 226:339–345CrossRefPubMedGoogle Scholar
  15. 15.
    Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC (2001) In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 8:1524–1531CrossRefPubMedGoogle Scholar
  16. 16.
    Wapnir IL, van de Rijn M, Nowels K, Amenta PS, Walton K, Montgomery K, Greco RS, Dohan O, Carrasco N (2003) Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab 88:1880–1888CrossRefPubMedGoogle Scholar
  17. 17.
    Schlumberger M, Tubiana M, De Vathaire F, Hill C, Gardet P, Travagli JP, Fragu P, Lumbroso J, Caillou B, Parmentier C (1986) Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 63:960–967CrossRefPubMedGoogle Scholar
  18. 18.
    Samaan NA, Schultz PN, Haynie TP, Ordonez NG (1985) Pulmonary metastasis of differentiated thyroid carcinoma: treatment results in 101 patients. J Clin Endocrinol Metab 60:376–380CrossRefPubMedGoogle Scholar
  19. 19.
    Mazzaferri E (1996) Radioiodine and other treatment and outcomes. In: RD Blau (ed) Werner and Ingbar’s the thyroid: a fundamental and clinical text. JB Lipincott, Philadelphia, pp 904–929Google Scholar
  20. 20.
    Renier C, Yao C, Goris M, Ghosh M, Nowles K, Gambhir SS, Wapnir I (2009) Endogenous NIS expression in triple negative breast cancers. Ann Surg Oncol 16:962–968CrossRefPubMedGoogle Scholar
  21. 21.
    Wapnir IL, Goris M, Yudd A, Dohan O, Adelman D, Nowels K, Carrasco N (2004) The Na+/I symporter mediates iodide uptake in breast cancer metastases and can be selectively down-regulated in the thyroid. Clin Cancer Res 10:4294–4302CrossRefPubMedGoogle Scholar
  22. 22.
    Mandell RB, Mandell LZ, Link CJ Jr (1999) Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 59:661–668PubMedGoogle Scholar
  23. 23.
    Kogai T, Kanamoto Y, Che LH, Taki K, Moatamed F, Schultz JJ, Brent GA (2004) Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodide uptake in mouse breast cancer models. Cancer Res 64:415–422CrossRefPubMedGoogle Scholar
  24. 24.
    Ghosh M, Gambhir SS, De A, Nowels K, Goris M, Wapnir I (2006) Bioluminescent monitoring of NIS-mediated (131)I ablative effects in MCF-7 xenografts. Mol Imaging 5:76–84PubMedGoogle Scholar
  25. 25.
    Kogai T, Taki K, Brent GA (2006) Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer 13:797–826CrossRefPubMedGoogle Scholar
  26. 26.
    Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, Kurek R, Vega-Valle E, Feigenbaum L, Halverson D, Vortmeyer AO, Steinberg SM, Aldape K, Steeg PS (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190–4198CrossRefPubMedGoogle Scholar
  27. 27.
    Lin NU, Bellon JR, Winer EP (2004) CNS metastases in breast cancer. J Clin Oncol 22:3608–3617CrossRefPubMedGoogle Scholar
  28. 28.
    Hicks DG, Short SM, Prescott NL, Tarr SM, Coleman KA, Yoder BJ, Crowe JP, Choueiri TK, Dawson AE, Budd GT, Tubbs RR, Casey G, Weil RJ (2006) Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am J Surg Pathol 30:1097–1104PubMedGoogle Scholar
  29. 29.
    Viani GA, Castilho MS, Salvajoli JV, Pellizzon AC, Novaes PE, Guimaraes FS, Conte MA, Fogaroli RC (2007) Whole brain radiotherapy for brain metastases from breast cancer: estimation of survival using two stratification systems. BMC Cancer 7:53CrossRefPubMedGoogle Scholar
  30. 30.
    Wen PY, Loeffler JS (2000) Brain metastases. Curr Treat Options Oncol 1:447–458CrossRefPubMedGoogle Scholar
  31. 31.
    Kusuhara H, Sugiyama Y (2005) Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2:73–85CrossRefPubMedGoogle Scholar
  32. 32.
    Girardin F (2006) Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci 8:311–321PubMedGoogle Scholar
  33. 33.
    Boogerd W, Vos VW, Hart AA, Baris G (1993) Brain metastases in breast cancer; natural history, prognostic factors and outcome. J Neurooncol 15:165–174CrossRefPubMedGoogle Scholar
  34. 34.
    Chiu AC, Delpassand ES, Sherman SI (1997) Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab 82:3637–3642CrossRefPubMedGoogle Scholar
  35. 35.
    Salvati M, Frati A, Rocchi G, Masciangelo R, Antonaci A, Gagliardi FM, Delfini R (2001) Single brain metastasis from thyroid cancer: report of twelve cases and review of the literature. J Neurooncol 51:33–40CrossRefPubMedGoogle Scholar
  36. 36.
    Datz FL (1986) Cerebral edema following iodine-131 therapy for thyroid carcinoma metastatic to the brain. J Nucl Med 27:637–640PubMedGoogle Scholar
  37. 37.
    Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338:297–306CrossRefPubMedGoogle Scholar
  38. 38.
    Riedel C, Levy O, Carrasco N (2001) Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 276:21458–21463CrossRefPubMedGoogle Scholar
  39. 39.
    Unterholzner S, Willhauck MJ, Cengic N, Schutz M, Goke B, Morris JC, Spitzweg C (2006) Dexamethasone stimulation of retinoic Acid-induced sodium iodide symporter expression and cytotoxicity of 131-I in breast cancer cells. J Clin Endocrinol Metab 91:69–78CrossRefPubMedGoogle Scholar
  40. 40.
    Knostman KA, McCubrey JA, Morrison CD, Zhang Z, Capen CC, Jhiang SM (2007) PI3 K activation is associated with intracellular sodium/iodide symporter protein expression in breast cancer. BMC Cancer 7:137CrossRefPubMedGoogle Scholar
  41. 41.
    Ohashi E, Kogai T, Kagechika H, Brent GA (2009) Activation of the PI3 kinase pathway by retinoic acid mediates sodium/iodide symporter induction and iodide transport in MCF-7 breast cancer cells. Cancer Res 69:3443–3450CrossRefPubMedGoogle Scholar
  42. 42.
    Cho JY, Shen DH, Yang W, Williams B, Buckwalter TL, La Perle KM, Hinkle G, Pozderac R, Kloos R, Nagaraja HN, Barth RF, Jhiang SM (2002) In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther 9:1139–1145CrossRefPubMedGoogle Scholar
  43. 43.
    Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM (2004) Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45:1366–1372PubMedGoogle Scholar
  44. 44.
    Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N (2003) The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24:48–77CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Corinne Renier
    • 1
  • Hannes Vogel
    • 2
  • Onyinye Offor
    • 1
  • Chen Yao
    • 1
    • 3
  • Irene Wapnir
    • 1
  1. 1.Department of SurgeryStanford University School of MedicineStanfordUSA
  2. 2.Department of PathologyStanford University School of MedicineStanfordUSA
  3. 3.Department of Vascular, Thyroid and Breast Surgery, The First Affiliated HospitalSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations