Journal of Neuro-Oncology

, Volume 93, Issue 3, pp 303–318 | Cite as

Reactivation of death receptor 4 (DR4) expression sensitizes medulloblastoma cell lines to TRAIL

  • Dolly G. Aguilera
  • Chandra M. Das
  • Neeta D. Sinnappah-Kang
  • Celine Joyce
  • Pete H. Taylor
  • Sijin Wen
  • Martin Hasselblatt
  • Werner Paulus
  • Greg Fuller
  • Johannes E. Wolff
  • Vidya Gopalakrishnan
laboratory Investigation - Human/Animal Tissue


Object Apoptosis, a key cellular response to therapeutic agents is often inactivated in tumor cells. In this study, we evaluated the expression of the tumor necrosis family of death receptors, DR4 and DR5, in medulloblastoma tumor samples and cell lines to determine if epigenetic modulation of gene expression could sensitize tumor cell lines to TRAIL-mediated apoptosis. Methods Human medulloblastoma samples and cell lines were analyzed for DR4 and DR5 expression by quantitative PCR and immunofluorescence assays. Cell lines with downregulated expression of one or both genes were treated with the histone deacetylase inhibitor, MS-275, and the expression of DR4 and DR5 measured by quantitative PCR, Western blotting, flow cytometry and chromatin immunoprecipitation assays. Induction of apoptosis in the presence of MS-275 was evaluated by TUNEL assay and its ability to augment TRAIL-mediated cytotoxicity was determined by MTT assays, Western blotting and flow cytometry. Results Compared to normal cerebellum, DR4, but not DR5 expression was consistently downregulated in medulloblastoma tumor samples and in Daoy and D283 cell lines. Interestingly, MS-275 decreased cell growth and induced apoptosis in Daoy and D283 cells. In Daoy cells, this coincided with increased histone H3 and H4 acetylation at the DR4 promoter and enhanced DR4 gene and protein expression as well as elevated Caspase-8 activity. The involvement of DR4 in the cellular response to MS-275 was further confirmed by the observation that knockdown of DR4 and FADD abrogated apoptosis. Further, addition of TRAIL to MS-275 treated cells resulted in an enhancement of apoptosis, suggesting that the upregulated death receptors were functional. Conclusion Our study provides an understanding of the role of DR4 in apoptosis of medulloblastoma cell lines and suggests a potential contribution of aberrant histone deacetylation to the resistance of medulloblastoma cells to therapeutic death.


MS-275 Medulloblastoma Apoptosis DR4 DR5 TRAIL 



FAS-associated death domain


3-(4, 5 dimethylthiazole-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-Tetrazolium


TNF-related apoptosis-inducing ligand


N-(2-aminophenyl)-4-[(N-pyridine-3-ylmetoxycarbonyl) aminomethyl] Benzamide



We would like to thank Drs. Peter Zage, Joya Chandra and Douglas Cardillo for their input on this manuscript. We also wish to thank Dr. Ashish Kamath for sharing xenografts of bladder cancer for our analyses.


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi: 10.1007/s00401-007-0243-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Eberhart CG, Burger PC (2003) Anaplasia and grading in medulloblastomas. Brain Pathol 13:376–385PubMedGoogle Scholar
  3. 3.
    Packer RJ, Goldwein J, Nicholson HS et al (1999) Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol 17:2127–2136PubMedGoogle Scholar
  4. 4.
    Askenazi A, Dikshit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308. doi: 10.1126/science.281.5381.1305 CrossRefGoogle Scholar
  5. 5.
    Ozoren N, El-Deiry WS (2003) Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13:135–147. doi: 10.1016/S1044-579X(02)00131-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. doi: 10.1038/nrd2133 PubMedCrossRefGoogle Scholar
  7. 7.
    Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202. doi: 10.1038/35106079 PubMedCrossRefGoogle Scholar
  8. 8.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159. doi: 10.1056/NEJMra072067 PubMedCrossRefGoogle Scholar
  9. 9.
    Pingoud-Meier C, Lang D, Janss AJ et al (2003) Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res 9:6401–6409PubMedGoogle Scholar
  10. 10.
    Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA (2002) Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 38:83–91. doi: 10.1016/S0959-8049(01)00355-0 PubMedCrossRefGoogle Scholar
  11. 11.
    Ebinger M, Senf L, Wachowski O, Scheurlen W (2004) Promoter methylation pattern of caspase-8, P16INK4A, MGMT, TIMP-3, and E-cadherin in medulloblastoma. Pathol Oncol Res 10:17–21PubMedCrossRefGoogle Scholar
  12. 12.
    Gonzalez-Gomez P, Bello MJ, Inda MM et al (2004) Deletion and aberrant CpG island methylation of caspase 8 gene in medulloblastoma. Oncol Rep 12:663–666PubMedGoogle Scholar
  13. 13.
    Lindsey JC, Lusher ME, Anderton JA et al (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25:661–668. doi: 10.1093/carcin/bgh055 PubMedCrossRefGoogle Scholar
  14. 14.
    Fulda S, Debatin KM (2006) 5-Aza-2′-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene 25:5125–5133. doi: 10.1038/sj.onc.1209608 PubMedCrossRefGoogle Scholar
  15. 15.
    Muhlisch J, Bajanowski T, Rickert CH et al (2007) Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses. J Neurooncol 83:17–29. doi: 10.1007/s11060-006-9309-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Riffkin CD, Gray AZ, Hawkins CJ, Chow CW, Ashley DM (2001) Ex vivo pediatric brain tumors express Fas (CD95) and FasL (CD95L) and are resistant to apoptosis induction. Neuro-oncol 3:229–240. doi: 10.1215/15228517-3-4-229 PubMedCrossRefGoogle Scholar
  17. 17.
    Antonov J, Goldstein DR, Oberli A et al (2005) Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest 85:1040–1050. doi: 10.1038/labinvest.3700303 PubMedCrossRefGoogle Scholar
  18. 18.
    Sinnapah-Kang ND, Mrak RE, Paulsen DB, Marchetti D (2006) Heparanase expression and TrkC/p75NTR ratios in human medulloblastoma. Clin Exp Metastasis 23:55–63. doi: 10.1007/s10585-006-9017-y CrossRefGoogle Scholar
  19. 19.
    Chen CY, Shyu AB (1995) AU Rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20:465–470. doi: 10.1016/S0968-0004(00)89102-1 PubMedCrossRefGoogle Scholar
  20. 20.
    Kuijlen JM, Mooij JJ, Platteel I et al (2006) TRAIL-receptor expression is an independent prognostic factor for survival in patients with a primary glioblastoma multiforme. J Neurooncol 78:161–171. doi: 10.1007/s11060-005-9081-1 PubMedCrossRefGoogle Scholar
  21. 21.
    Horak P, Pils D, Haller G et al (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 3:335–343. doi: 10.1158/1541-7786.MCR-04-0136 PubMedCrossRefGoogle Scholar
  22. 22.
    van Noesel MM, van Bezouw S, Voute PA, Herman JG, Pieters R, Versteeg R (2003) Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38:226–233. doi: 10.1002/gcc.10278 PubMedCrossRefGoogle Scholar
  23. 23.
    van Geelen CM, deVries EG, Le TK, van Weeghel RP, deJong S (2003) Differential modulation of the TRAIL receptors and CD95 in colon carcinoma. Br J Cancer 89:363–373. doi: 10.1038/sj.bjc.6601065 PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki M, Shigematsu H, Shivapurkar N et al (2006) Methylation of apoptosis related genes in the pathogenesis and prognosis of prostate cancer. Cancer Lett 242:222–230. doi: 10.1016/j.canlet.2005.11.002 PubMedCrossRefGoogle Scholar
  25. 25.
    Bae SI, Cheriyath V, Jacobs BS, Reu FJ, Borden EC (2008) Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL. Oncogene 27:490–498. doi: 10.1038/sj.onc.1210655 PubMedCrossRefGoogle Scholar
  26. 26.
    Bachman KE, Park BH, Rhee I et al (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3:89–95. doi: 10.1016/S1535-6108(02)00234-9 PubMedCrossRefGoogle Scholar
  27. 27.
    Boldin MP, Mett IL, Varfolomeev EE et al (1995) Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem 270:387–391. doi: 10.1074/jbc.270.1.387 PubMedCrossRefGoogle Scholar
  28. 28.
    Sonneman J, Kumar KS, Heesch S et al (2006) Histone deacetylase inhibitors induce cell death and enhance susceptibility to ionizing radiation, etoposide and TRAIL. Int J Oncol 28:755–766Google Scholar
  29. 29.
    Ravi R, Bedi GC, Engstrom LW, Zeng Q, Mookerjee B, Gelinas C, Fuchs EJ, Bedi A (2001) Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 3:409–416. doi: 10.1038/35070096 PubMedCrossRefGoogle Scholar
  30. 30.
    Guan B, Yue P, Lotan R, Sun SY (2002) Evidence that human death receptor protein 4is regulated by activator protein 1. Oncogene 21:3121–3129. doi: 10.1038/sj.onc.1205430 PubMedCrossRefGoogle Scholar
  31. 31.
    Liu X, Yue P, Khuri FR, Sun SY (2004) p53 Upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 64:5078–5083. doi: 10.1158/0008-5472.CAN-04-1195 PubMedCrossRefGoogle Scholar
  32. 32.
    Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC (2005) Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4:1912–1922. doi: 10.1158/1535-7163.MCT-05-0184 PubMedCrossRefGoogle Scholar
  33. 33.
    Jaboin J, Wild J, Hamidi H et al (2002) MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62:6108–6115PubMedGoogle Scholar
  34. 34.
    Shu Q, Antalffy B, Su JM et al (2006) Valproic acid prolongs survival time of severe combined immunodeficient mice bearing intracerebellar orthotopic medulloblastoma xenografts. Clin Cancer Res 12:4687–4694. doi: 10.1158/1078-0432.CCR-05-2849 PubMedCrossRefGoogle Scholar
  35. 35.
    Graham C, Tucker C, Creech J et al (2006) Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin Cancer Res 12:223–234. doi: 10.1158/1078-0432.CCR-05-1225 PubMedCrossRefGoogle Scholar
  36. 36.
    Kumar KS, Sonnemann J, Beck JF (2006) Histone deacetylase inhibitors induce cell death in supratentorial primitive neuroectodermal tumor cells. Oncol Rep 16:1047–1052PubMedGoogle Scholar
  37. 37.
    Spiller SE, Ravanpay AC, Hahn AW, Olson JM (2006) Suberoylanilide hydroxamic acid is effective in preclinical studies of medulloblastoma. J Neurooncol 79:259–270. doi: 10.1007/s11060-006-9142-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Camphausen K, Cerna D, Scott T et al (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386. doi: 10.1002/ijc.20774 PubMedCrossRefGoogle Scholar
  39. 39.
    Camphausen K, Scott T, Sproull M, Tofilon PJ (2004) Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 10:6066–6071. doi: 10.1158/1078-0432.CCR-04-0537 PubMedCrossRefGoogle Scholar
  40. 40.
    Das CM, Aguilera D, Vasquez H et al (2007) Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J Neurooncol 85:159–170. doi: 10.1007/s11060-007-9402-7 PubMedCrossRefGoogle Scholar
  41. 41.
    Banuelos CA, Banath JP, MacPhail SH et al (2007) Radiosensitization by the histone deacetylase inhibitor PCI-24781. Clin Cancer Res 13:6816–6826. doi: 10.1158/1078-0432.CCR-07-1126 PubMedCrossRefGoogle Scholar
  42. 42.
    Nagane M, Huang HJ, Cavenee WK (2001) The potential of TRAIL for cancer chemotherapy. Apoptosis 6:191–197. doi: 10.1023/A:1011336726649 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Dolly G. Aguilera
    • 1
  • Chandra M. Das
    • 1
  • Neeta D. Sinnappah-Kang
    • 1
    • 2
  • Celine Joyce
    • 1
  • Pete H. Taylor
    • 1
  • Sijin Wen
    • 3
  • Martin Hasselblatt
    • 4
  • Werner Paulus
    • 4
  • Greg Fuller
    • 5
  • Johannes E. Wolff
    • 1
    • 6
  • Vidya Gopalakrishnan
    • 1
    • 6
  1. 1.Department of PediatricsUniversity of Texas, M.D. Anderson Cancer CenterHoustonUSA
  2. 2.Betty Cowan Research and Innovation CentreChristian Medical College and HospitalLudhianaIndia
  3. 3.Department of BiostatisticsUniversity of Texas at HoustonHoustonUSA
  4. 4.Institute of NeuropathologyUniversity HospitalMunsterGermany
  5. 5.Department of PathologyUniversity of Texas, M.D. Anderson Cancer CenterHoustonUSA
  6. 6.Graduate School of Biomedical SciencesUniversity of Texas at HoustonHoustonUSA

Personalised recommendations