Advertisement

Journal of Neuro-Oncology

, Volume 91, Issue 1, pp 51–58 | Cite as

Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study

  • Jaishri O. Blakeley
  • Jeffrey Olson
  • Stuart A. Grossman
  • Xiaoying He
  • Jon Weingart
  • Jeffrey G. Supko
  • For the New Approaches to Brain Tumor Therapy (NABTT) Consortium
Clinical study - patient study

Abstract

Purpose: Determining whether potentially therapeutic drug exposure is achieved within brain tumors in an exploratory clinical investigation would provide a rational basis for selecting agents for evaluation in phase II trials. This study investigated the use of microdialysis to assess intratumoral drug distribution in patients with recurrent high grade gliomas (HGG). Patients and Methods: Microdialysis catheters were placed during surgery for residual HGG 1-day before giving methotrexate (MTX) 12-g/m2 by 4-h i.v. infusion. MTX was measured by Liquid Chromatography/Mass Spectrometry (LC/MS) in plasma and microdialysate during the infusion and for 24-h thereafter. Blood brain barrier (BBB) permeability of tissue in which the microdialysis probe was located was determined by digitally fusing brain CT and contrast enhanced MRI images. Results: The microdialysis probe was located in contrast enhancing tumor in two patients and nonenhancing tissue in two others. Cerebral drug penetration, as indicated by the ratio of the area under the MTX concentration–time curves in brain extracellular fluid and plasma, was considerably greater in contrast enhancing tumor (0.28–0.31) than nonenhancing tissue (0.032–0.094). Nevertheless, MTX concentrations in ECF exceeded 2-μM, the average concentration for 50% cell kill against glioma cell lines in vitro, for 20–26 h in both regions of the tumor. Conclusions: Microdialysis is a very informative technique for characterizing the intratumoral pharmacokinetics of drugs, such as MTX, that do not freely penetrate the BBB. Establishing the catheter probe location relative to areas of BBB disruption is required to properly assess the significance of microdialysis data in this context.

Keywords

Glioma Microdialysis Drug delivery Pharmacokinetics 

Notes

Acknowledgment

Grant support: This study was supported by grants U01-CA62475, U01-CA105689, and P30-CA0516 from the National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland. Microdialysis catheters were generously donated by CMA Microdialysis AB (North Chelmsford, MA).

References

  1. 1.
    Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24(8):1273–1280. doi: 10.1200/JCO.2005.04.7522 PubMedCrossRefGoogle Scholar
  2. 2.
    Stupp R, Hegi ME, Gilbert MR et al (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25(26):4127–4136. doi: 10.1200/JCO.2007.11.8554 PubMedCrossRefGoogle Scholar
  3. 3.
    Reardon DA, Rich JN, Friedman HS et al (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24(8):1253–1265. doi: 10.1200/JCO.2005.04.5302 PubMedCrossRefGoogle Scholar
  4. 4.
    Brandsma Dvan den Bent MJ (2007) Molecular targeted therapies and chemotherapy in malignant gliomas. Curr Opin Oncol 19(6):598–605Google Scholar
  5. 5.
    Omuro AM, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6(7):1909–1919. doi: 10.1158/1535-7163.MCT-07-0047 PubMedCrossRefGoogle Scholar
  6. 6.
    Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271(1):58–65PubMedCrossRefGoogle Scholar
  7. 7.
    Netti PA, Baxter LT, Boucher Y et al (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 55(22):5451–5458PubMedGoogle Scholar
  8. 8.
    Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54(1):131–140. doi: 10.1227/01.NEU.0000097715.11966.8E discussion 141–2PubMedCrossRefGoogle Scholar
  9. 9.
    Motl S, Zhuang Y, Waters CM et al (2006) Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 45(9):871–903. doi: 10.2165/00003088-200645090-00002 PubMedCrossRefGoogle Scholar
  10. 10.
    Doolittle ND, Peereboom DM, Christoforidis GA et al (2007) Delivery of chemotherapy and antibodies across the blood-brain-barrier and the role of chemoprotection, in primary and metastatic brain tumors: report of the eleventh annual blood-brain barrier consortium meeting. J Neurooncol 81(1):81–91. doi: 10.1007/s11060-006-9209-y PubMedCrossRefGoogle Scholar
  11. 11.
    Muldoon LL, Soussain C, Jahnke K et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25(16):2295–2305. doi: 10.1200/JCO.2006.09.9861 PubMedCrossRefGoogle Scholar
  12. 12.
    Nicolazzo JA, Charman SA, Charman WN (2006) Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol 58(3):281–293. doi: 10.1211/jpp.58.3.0001 PubMedCrossRefGoogle Scholar
  13. 13.
    de Lange EC, Danhof M, de Boer AG et al (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev 25(1):27–49. doi: 10.1016/S0165-0173(97)00014-3 PubMedCrossRefGoogle Scholar
  14. 14.
    de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41(10):691–703. doi: 10.2165/00003088-200241100-00001 PubMedCrossRefGoogle Scholar
  15. 15.
    Perkins AC, Frier M (2004) Radionuclide imaging in drug development. Curr Pharm Des 10(24):2907–2921. doi: 10.2174/1381612043383476 PubMedCrossRefGoogle Scholar
  16. 16.
    Johansen MJ, Newman RA, Madden T (1997) The use of microdialysis in pharmacokinetics and pharmacodynamics. Pharmacotherapy 17(3):464–481PubMedGoogle Scholar
  17. 17.
    Siddiqui MM, Shuaib A (2001) Intracerebral microdialysis and its clinical application: a review. Methods 23(1):83–94. doi: 10.1006/meth.2000.1108 PubMedCrossRefGoogle Scholar
  18. 18.
    Major O, Shdanova T, Duffek L et al (1990) Continuous monitoring of blood-brain barrier opening to Cr51-EDTA by microdialysis following probe injury. Acta Neurochir Suppl (Wien) 51:46–48Google Scholar
  19. 19.
    Ungerstedt U, Rostami E (2004) Microdialysis in neurointensive care. Curr Pharm Des 10(18):2145–2152. doi: 10.2174/1381612043384105 PubMedCrossRefGoogle Scholar
  20. 20.
    Mindermann T, Zimmerli W, Gratzl O (1998) Rifampin concentrations in various compartments of the human brain: a novel method for determining drug levels in the cerebral extracellular space. Antimicrob Agents Chemother 42(10):2626–2629PubMedGoogle Scholar
  21. 21.
    Bergenheim AT, Capala J, Roslin M et al (2005) Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J Neurooncol 71(3):287–293. doi: 10.1007/s11060-004-1724-0 PubMedCrossRefGoogle Scholar
  22. 22.
    de Lange EC, de Vries JD, Zurcher C et al (1995) The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res 12(12):1924–1931. doi: 10.1023/A:1016239822287 PubMedCrossRefGoogle Scholar
  23. 23.
    Devineni D, Klein-Szanto A, Gallo JM (1996) In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats. Cancer Chemother Pharmacol 38(6):499–507. doi: 10.1007/s002800050518 PubMedCrossRefGoogle Scholar
  24. 24.
    Dukic S, Heurtaux T, Kaltenbach ML et al (1999) Pharmacokinetics of methotrexate in the extracellular fluid of brain C6-glioma after intravenous infusion in rats. Pharm Res 16(8):1219–1225. doi: 10.1023/A:1018945529611 PubMedCrossRefGoogle Scholar
  25. 25.
    Dukic S, Kaltenbach ML, Gourdier B et al (1998) Determination of free extracellular levels of methotrexate by microdialysis in muscle and solid tumor of the rabbit. Pharm Res 15(1):133–138. doi: 10.1023/A:1011973409022 PubMedCrossRefGoogle Scholar
  26. 26.
    Eder JP Jr, Supko JG, Lynch T et al (1998) Phase I trial of the colloidal dispersion formulation of 9-amino-20(S)-camptothecin administered as a 72-hour continuous intravenous infusion. Clin Cancer Res 4(2):317–324PubMedGoogle Scholar
  27. 27.
    Comandone A, Passera R, Boglione A, Tagini V, Ferrari SandCattel L (2005) High dose methotrexate in adult patients with osteosarcoma: Clinical and pharmacokinetic results. Acta Oncol 44:406–411. doi: 10.1080/02841860510029770 PubMedCrossRefGoogle Scholar
  28. 28.
    Earnest FIV, Kelly PJ, Scheithauer BW et al (1988) Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166(3):823–827PubMedGoogle Scholar
  29. 29.
    McKnight TR, von dem Bussche MH, Vigneron DB et al (2002) Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 97(4):794–802PubMedCrossRefGoogle Scholar
  30. 30.
    Donelli MG, Zucchetti M D’Incalci M (1992) Do anticancer agents reach the tumor target in the human brain? Cancer Chemother Pharmacol 30(4):251–260. doi: 10.1007/BF00686291 PubMedCrossRefGoogle Scholar
  31. 31.
    Hesselink JR, Press GA (1988) MR contrast enhancement of intracranial lesions with Gd-DTPA. Radiol Clin North Am 26(4):873–887PubMedGoogle Scholar
  32. 32.
    Flannery T, McConnell RS, McQuaid S et al (2007) Detection of cathepsin S cysteine protease in human brain tumour microdialysates in vivo. Br J Neurosurg 21(2):204–209. doi: 10.1080/02688690701248190 PubMedCrossRefGoogle Scholar
  33. 33.
    Rochas MA, Tufenkji AE, Levillain P et al (1991) Protein binding of methotrexate to human albumin and serum. A first derivative spectroscopic analysis. Arzneimittelforschung 41(12):1286–1288PubMedGoogle Scholar
  34. 34.
    Maia MB, Saivin S, Chatelut E et al (1996) In vitro and in vivo protein binding of methotrexate assessed by microdialysis. Int J Clin Pharmacol Ther 34(8):335–341PubMedGoogle Scholar
  35. 35.
    Wolff JE, Trilling T, Molenkamp G, Egeler RM, Jurgens H (1999) Chemosensitivity of glioma cells in vitro: a metaanalysis. J Cancer Res Clin Oncol 125:481–486PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Jaishri O. Blakeley
    • 1
  • Jeffrey Olson
    • 2
  • Stuart A. Grossman
    • 1
  • Xiaoying He
    • 3
  • Jon Weingart
    • 1
  • Jeffrey G. Supko
    • 3
  • For the New Approaches to Brain Tumor Therapy (NABTT) Consortium
  1. 1.Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Emory University School of MedicineAtlantaUSA
  3. 3.Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations