Skip to main content

Advertisement

Log in

Tissue transgluaminase 2 expression in meningiomas

  • Lab. Investigation-human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Meningiomas are common intracranial tumors that occur in extra-axial locations, most often over the cerebral convexities or along the skull-base. Although often histologically benign these tumors frequently present challenging clinical problems. Primary clinical management of patients with symptomatic tumors is surgical resection. Radiation treatment may arrest growth or delay recurrence of these tumors, however, meningioma cells are generally resistant to apoptosis after treatment with radiation. Tumor cells are known to alter their expression of proteins that interact in the ECM to provide signals important in tumor progression. One such protein, fibronectin, is expressed in elevated levels in the ECM in a number of tumors including meningiomas. We recently reported that levels of both extracellular fibronectin and tissue transglutaminase 2 (TG2) were increased in glioblastomas. We examined the expression of fibronectin and its association TG2 in meningiomas. Both fibronectin and TG2 were strongly expressed in all meningiomas studied. TG2 activity was markedly elevated in meningiomas, and TG2 was found to co-localize with fibronectin. Treatment of meningiomas with the small molecule TG2 inhibitor, KCC009, inhibited the binding of TG2 to fibronectin and blocked disposition of linear strands of fibronectin in the ECM. KCC009 treatment promoted apoptosis and enhanced radiation sensitivity both in cultured IOMM-Lee meningioma cells and in meningioma tumor explants. These findings support a potential protective role for TG2 in meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lantos PL, Vandenberg SR, Kleihues P (1997) Tumours of the nervous system. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 583–879

    Google Scholar 

  2. Nakamura M, Roser F, Michel J, Jacobs C, Samii M (2003) The natural history of incidental meningiomas. Neurosurgery 53:62–71

    Article  PubMed  Google Scholar 

  3. Jensen AW, Brown PD, Pollock BE et al (2005) Gamma knife radiosurgery of radiation-induced intracranials: local control, outcomes, and complications. Int J Radiat Oncol Biol Phys 62:32–37

    Article  PubMed  Google Scholar 

  4. Katz TS, Amdur RJ, Yachnis AT, Mendenhall WM, Morris CG (2005) Pushing the limits of radiotherapy for atypical and malignant meningioma. Am J Clin Oncol 28:70–74

    Article  PubMed  Google Scholar 

  5. Newton HB, Slivka MA, Stevens C (2000) Hydroxyurea chemotherapy for unresectable or residual meningioma. J Neurooncol 49:165–170

    Article  PubMed  CAS  Google Scholar 

  6. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  PubMed  CAS  Google Scholar 

  7. Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  PubMed  CAS  Google Scholar 

  8. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  PubMed  CAS  Google Scholar 

  9. Nakaoka H, Perez DM, Baek KJ et al (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264:1593–1596

    Article  PubMed  CAS  Google Scholar 

  10. Verderio EAM, Telci D, Okoye A, Melino G, Griffin M (2003) A novel RGD-independent cell adhesion pathway mediated by fibronectin-bound tissue transglutaminase rescues cells from anoikis. J Biol Chem 278(43):42604–42614

    Article  PubMed  CAS  Google Scholar 

  11. Yuan L, Choi K, Khosla C, Zheng X, Higashikubo R, Chicoine MR, Rich KM (2005) Tissue transglutaminase 2 inhibition promotes cell death and chemosensitivity in glioblastoma. Mol Cancer Ther 4:293–302

    Article  Google Scholar 

  12. Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN, Piwnica-Worms D, Rich KM (2007) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 26(18):2563–2573

    Article  PubMed  CAS  Google Scholar 

  13. Choi K, Siegel M, Piper JL et al (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12(4):469–475

    Article  PubMed  CAS  Google Scholar 

  14. Lee W (1990) Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery 27:389–396

    Article  PubMed  CAS  Google Scholar 

  15. Lesort M, Tucholski J, Zhang J, Johnson GVW (2000) Impaired mitochondrial function results in increased tissue transglutaminase activity in situ. J Neurochem 75:1951–1961

    Article  PubMed  CAS  Google Scholar 

  16. Martinet N, Bonnard L, Regnault V et al (2003) In vivo transglutaminase type 1 expression in normal lung, preinvasive bronchial lesions, and lung cancer. Am J Respir Cell Mol Biol 28:428–435

    Article  PubMed  CAS  Google Scholar 

  17. Mehta K, Fok J, Miller FR, Koul D, Sahin AA (2004) Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 10:8068–8076

    Article  PubMed  CAS  Google Scholar 

  18. Chen JS, Argarwal N, Mehta K (2002) Multidrug-resistant MCF-7 breast cancer cells contain deficient intracellular calcium pools. Breast Cancer Res Treat 71:237–247

    Article  PubMed  CAS  Google Scholar 

  19. Mehta K, Devarajan E, Chen J, Multani A, Pathak S (2002) Multidrug-resistant MCF-7 cells: an identiy crisis. J Natl Cancer Inst 94:1652–1654

    PubMed  CAS  Google Scholar 

  20. Liang Y, McDonnell S, Clynes M (2002) Examining the relationship between cancer invasion/metastasis and drug resistance. Curr Cancer Drug Targets 2:257–277

    Article  PubMed  CAS  Google Scholar 

  21. Kerbel RS, Kabayashi H, Graham CH (1994) Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes? J Cell Biochem 56:37–47

    Article  PubMed  CAS  Google Scholar 

  22. Qian F, Zhang ZC, Wu XF, Li YP, Xu Q (2005) Interaction between integrin α5 and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem Biophys Res Comm 333:1269–1275

    Article  PubMed  CAS  Google Scholar 

  23. Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838

    Article  PubMed  CAS  Google Scholar 

  24. Akimov SS, Belkikn AM (2001) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFβ-dependent matrix deposition. J Cell Sci 114:2989–3000

    PubMed  CAS  Google Scholar 

  25. Khwaja A, Rodriguez-Viciana PK, Wennstrom S, Warne PH, Downward J (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 16:2783–2793

    Article  PubMed  CAS  Google Scholar 

  26. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS (1997) Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 17:4406–4418

    PubMed  CAS  Google Scholar 

  27. Fornaro M, Plescia J, Cheang S et al (2003) Fibronectin protects prostate cancer cells from tumor necrosis factor-α-induced apoptosis via the AKT/survivin pathway. J Biol Chem 278(50):50402–50411

    Article  PubMed  CAS  Google Scholar 

  28. Datta SR, Dudek H, Tao T et al (1997) Akt phosphorylation of Bad couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  29. Tan DA, Teo WL, Smith DR (2002) Expression of survivin in primary glioblastoma. J Cancer Res Clin Oncol 128:302–306

    Article  PubMed  Google Scholar 

  30. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  PubMed  CAS  Google Scholar 

  31. Frisch SM, Ruoslahti E (1997) Integrins and anoikis. Curr Opin Cell Biol 9:701–706

    Article  PubMed  CAS  Google Scholar 

  32. Giancotti FG, Ruoslahti E (1999) Integren signaling. Science 285:1028–1032

    Article  PubMed  CAS  Google Scholar 

  33. Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev 5:816–826

    Article  CAS  Google Scholar 

  34. Clarck EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239

    Article  Google Scholar 

  35. Damiano JS, Cress AE, Hezlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93:1658–1667

    PubMed  CAS  Google Scholar 

  36. Blases MA, Plasswilm L et al (2003) Fibronectin and laminin increase resistance to ionizing radiation and the cytotoxic drug Ukrain in human tumor and normal cells in vitro. Int J Radiat Biol 79:709–720

    Article  Google Scholar 

  37. Rutka JT, Giblin J, Dougherty DV, McCulloch JR, DeArmond SJ, Rosenblum ML (1986) An ultrastructural and immunocytochemical analysis of leptomeningeal and meningioma cultures. J Neuropathol Exp Neurol 45:285–303

    Article  PubMed  CAS  Google Scholar 

  38. Bellon G, Caulet T, Cam Y et al (1985) Immunohistochemical localisation of macromolecules of the basement membrane and extracellular matrix of human gliomas and meningiomas. Acta Neuropathol 66:245–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the Barnes-Jewish Hospital (to K.M.R.) and by a Grant from the NIH (R01 DK63158 to C.K.). In accordance with Washington University financial disclosure policy, K.M.R. has a relationship with Alvine Pharmaceutical,Inc with regard to KCC009. M.S. is a recipient of a predoctoral fellowship from the Stanford-NIH Biotechnology Training Grant. We thank Dr. Mark Watson for assistance in sharing specimens from the Washington Tumor Repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Rich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L., Behdad, A., Siegel, M. et al. Tissue transgluaminase 2 expression in meningiomas. J Neurooncol 90, 125–132 (2008). https://doi.org/10.1007/s11060-008-9642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9642-1

Keywords

Navigation