Journal of Neuro-Oncology

, Volume 84, Issue 3, pp 233–244 | Cite as

Specific mTOR inhibitor rapamycin enhances cytotoxicity induced by alkylating agent 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU) in human U251 malignant glioma cells

  • Kazuhiro Tanaka
  • Takashi Sasayama
  • Katsu Mizukawa
  • Atsufumi Kawamura
  • Takeshi Kondoh
  • Kohkichi Hosoda
  • Toshiyoshi Fujiwara
  • Eiji Kohmura
Lab. Investigation-Human/Animal Tissue


Loss of the PTEN tumor suppressor gene and amplification of the epidermal growth factor receptor (EGFR), which is common in malignant gliomas, result in activation of the mammalian target of rapamycin (mTOR). Rapamycin is a highly specific inhibitor of mTOR and induces a cytostatic effect in various glioma cell lines. DNA-damaging agents such as nitrosourea are widely used in malignant glioma treatment; therefore, we investigated the effect of rapamycin on cell growth and death in combination with 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU, nimustine hydrochloride) in human glioma cells. In U251 malignant glioma (U251MG) cells, we confirmed that rapamycin enhanced ACNU-induced apoptosis. We found that rapamysin inhibited ACNU-induced p21 induction, and knocking down of p21 protein by siRNA enhanced ACNU-induced apoptosis in U251MG cells. Furthermore, adenovirus-mediated over-expression of p21 protein rescued U251MG cells from apoptosis induced by ACNU and rapamycin. Finally, treatment of intracerebral U251MG xenografts with a combination of rapamycin and ACNU in vivo resulted in statistically prolonged median survival (P < 0.05). These results suggest that rapamycin in combination with DNA-damaging agents may be efficacious in the treatment of malignant gliomas.


Apoptosis Malignant glioma p21 The mammalian target of rapamycin (mTOR) 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU) 



This work was supported in part by a Grant-in-Aid for Scientific Research to Eiji Kohmura (15659337), Atsufumi Kawamura (16591440), and Takashi Sasayama (17790968) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

We are grateful to Hideyuki Saya (Kumamoto University, Kumamoto, Japan), for valuable suggestions on various analyses. We would like to thank Ayumi Katoh and Nami Takase for technical assistance in the Western blot assays and in vivo experiments.


  1. 1.
    Behin A, Hoang-Xuan K, Carpentier AF et al (2003) Primary brain tumours in adults. Lancet 361:323–331PubMedCrossRefGoogle Scholar
  2. 2.
    Reardon DA, Rich JN, Friedman HS et al (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265. ReviewPubMedCrossRefGoogle Scholar
  3. 3.
    Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489PubMedGoogle Scholar
  4. 4.
    Dutcher JP (2004) Mammalian target of rapamycin inhibition. Clin Cancer Res 10:6382S–6387SPubMedCrossRefGoogle Scholar
  5. 5.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484. ReviewPubMedCrossRefGoogle Scholar
  6. 6.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945PubMedCrossRefGoogle Scholar
  7. 7.
    Shinojima N, Tada K, Shiraishi S et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970PubMedGoogle Scholar
  8. 8.
    Simmons ML, Lamborn KR, Takahashi M et al (2001) Analysis of complex relationships between age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res 61:1122–1128PubMedGoogle Scholar
  9. 9.
    Adachi J, Ohbayashi K, Suzuki T et al (1999) Cell cycle arrest and astrocytic differentiation resulting from PTEN expression in glioma cells. J Neurosurg 91:822–830PubMedCrossRefGoogle Scholar
  10. 10.
    Ermoian RP, Furniss CS, Lamborn KR et al (2002) Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8:1100–1106PubMedGoogle Scholar
  11. 11.
    Tanaka M, Koul D, Davies MA et al (2000) MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 19:5406–5412PubMedCrossRefGoogle Scholar
  12. 12.
    Vanderweele DJ, Rudin CM (2005) Mammalian target of rapamycin promotes vincristine resistance through multiple mechanisms independent of maintained glycolytic rate. Mol Cancer Res 3:635–644PubMedCrossRefGoogle Scholar
  13. 13.
    VanderWeele DJ, Zhou R, Rudin CM (2004) Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Mol Cancer Ther 3:1605–1613PubMedGoogle Scholar
  14. 14.
    Van Duyne GD, Standaert RF, Schreiber SL et al (1991) Atomic structure of the rapamycin human immunophilin FKBP-12 complex. J Am Chem Soc 113:7433–7434CrossRefGoogle Scholar
  15. 15.
    Vignot S, Faivre S, Aguirre D et al (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525–537PubMedCrossRefGoogle Scholar
  16. 16.
    Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3:371–377PubMedCrossRefGoogle Scholar
  17. 17.
    Huang S, Liu LN, Hosoi H et al (2001) p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 61:3373–3381PubMedGoogle Scholar
  18. 18.
    Hosoi H, Dilling MB, Shikata T et al (1999) Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 59:886–894PubMedGoogle Scholar
  19. 19.
    Shi Y, Gera J, Hu L et al (2002) Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 62:5027–5034PubMedGoogle Scholar
  20. 20.
    Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346PubMedGoogle Scholar
  21. 21.
    Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304PubMedCrossRefGoogle Scholar
  22. 22.
    Chang SM, Wen P, Cloughesy T et al (2005) North American Brain Tumor Consortium and the National Cancer Institute. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23:357–361PubMedCrossRefGoogle Scholar
  23. 23.
    Raymond E, Alexandre J, Faivre S et al (2004) Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 22:2336–2347PubMedCrossRefGoogle Scholar
  24. 24.
    Panwalkar A, Verstovsek S, Giles FJ (2004) Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer 100:657–666PubMedCrossRefGoogle Scholar
  25. 25.
    Xu Q, Thompson JE, Carroll M (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106:4261–4268PubMedCrossRefGoogle Scholar
  26. 26.
    Shi Y, Frankel A, Radvanyi LG et al (1995) Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res 55:1982–1988PubMedGoogle Scholar
  27. 27.
    Wu C, Wangpaichitr M, Feun L et al (2005) Overcoming cisplatin resistance by mTOR inhibitor in lung cancer. Mol Cancer 4:25–34PubMedCrossRefGoogle Scholar
  28. 28.
    Grunwald V, DeGraffenried L, Russel D et al (2002) Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 62:6141–6145PubMedGoogle Scholar
  29. 29.
    Eshleman JS, Carlson BL, Mladek AC et al (2002) Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res 62:7291–7297PubMedGoogle Scholar
  30. 30.
    Beuvink I, Boulay A, Fumagalli S et al (2005) The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120:747–759PubMedCrossRefGoogle Scholar
  31. 31.
    Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang WW, Fang X, Branch CD et al (1993) Generation and identification of recombinant adenovirus by liposome-mediated transfection and PCR analysis. Biotechniques 15:868–872PubMedGoogle Scholar
  33. 33.
    Eastham JA, Hall SJ, Sehgal I et al (1995) In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 55:5151–5155PubMedGoogle Scholar
  34. 34.
    Miyake H, Hanada N, Nakamura H et al (1998) Overexpression of Bcl-2 in bladder cancer cells inhibits apoptosis induced by cisplatin and adenoviral-mediated p53 gene transfer. Oncogene 16:933–943PubMedCrossRefGoogle Scholar
  35. 35.
    Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163. ReviewPubMedCrossRefGoogle Scholar
  36. 36.
    Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70PubMedCrossRefGoogle Scholar
  37. 37.
    Nourse J, Firpo E, Flanagan WM et al (1994) Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372:570–573PubMedCrossRefGoogle Scholar
  38. 38.
    Vinals F, Chambard JC, Pouyssegur J (1999) p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem 274:26776–26782PubMedCrossRefGoogle Scholar
  39. 39.
    Gaben AM, Saucier C, Bedin M et al (2004) Rapamycin inhibits cdk4 activation, p 21(WAF1/CIP1) expression and G1-phase progression in transformed mouse fibroblasts. Int J Cancer 108:200–206PubMedCrossRefGoogle Scholar
  40. 40.
    Gao N, Zhang Z, Jiang BH et al (2003) Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 310:1124–1132PubMedCrossRefGoogle Scholar
  41. 41.
    Vega F, Medeiros LJ, Leventaki V et al (2006) Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66:6589–6597PubMedCrossRefGoogle Scholar
  42. 42.
    Parker SB, Eichele G, Zhang P et al (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027PubMedCrossRefGoogle Scholar
  43. 43.
    Blagosklonny MV, Wu GS, Omura S et al (1996) Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227:564–569PubMedCrossRefGoogle Scholar
  44. 44.
    Wang X, Omura S, Szweda LI et al (1997) Rapamycin inhibits proteasome activator expression and proteasome activity. Eur J Immunol 27:2781–2786PubMedCrossRefGoogle Scholar
  45. 45.
    Shapira M, Kakiashvili E, Rosenberg T et al (2006) The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells. Breast Cancer Res 8:R46PubMedCrossRefGoogle Scholar
  46. 46.
    Fan S, Chang JK, Smith ML et al (1997) Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 14:2127–2136PubMedCrossRefGoogle Scholar
  47. 47.
    Tian H, Wittmack EK, Jorgensen TJ (2000) p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res 60:679–684PubMedGoogle Scholar
  48. 48.
    Gorospe M, Wang X, Guyton KZ et al (1996) Protective role of p21(Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells. Mol Cell Biol 16:6654–6660PubMedGoogle Scholar
  49. 49.
    Gorospe M, Cirielli C, Wang X et al (1997) p21 (Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14:929–935PubMedCrossRefGoogle Scholar
  50. 50.
    Liu ZM, Chen GG, Ng EK et al (2004) Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells. Oncogene 23:503–513PubMedCrossRefGoogle Scholar
  51. 51.
    Asada M, Yamada T, Ichijo H et al (1999) Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 18:1223–1234PubMedCrossRefGoogle Scholar
  52. 52.
    Shim J, Lee H, Park J et al (1996) A non-enzymatic p21 protein inhibitor of stressactivated protein kinases. Nature 381:804–806PubMedCrossRefGoogle Scholar
  53. 53.
    Suzuki A, Tsutomi Y, Akahane K et al (1998) Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17: 931–939PubMedCrossRefGoogle Scholar
  54. 54.
    Kondo S, Barna BP, Kondo Y et al (1996) WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis. Oncogene 13:1279–1285PubMedGoogle Scholar
  55. 55.
    Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28:727–732Google Scholar
  56. 56.
    Easton JB, Houghton PJ (2006) mTOR and cancer therapy. Oncogene 25:6436–6446. ReviewPubMedCrossRefGoogle Scholar
  57. 57.
    Reardon DA, Quinn JA, Vredenburgh JJ et al (2006) Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 12:860–868PubMedCrossRefGoogle Scholar
  58. 58.
    Doherty L, Gigas DC, Kesari S et al (2006) Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 67:156–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kazuhiro Tanaka
    • 1
  • Takashi Sasayama
    • 1
  • Katsu Mizukawa
    • 1
  • Atsufumi Kawamura
    • 1
  • Takeshi Kondoh
    • 1
  • Kohkichi Hosoda
    • 1
  • Toshiyoshi Fujiwara
    • 2
  • Eiji Kohmura
    • 1
  1. 1.Department of NeurosurgeryKobe University Graduate School of MedicineKobeJapan
  2. 2.Center for Gene and Cell TherapyOkayama University Graduate School of Medicine, Density and Pharmaceutical SciencesOkayamaJapan

Personalised recommendations