Skip to main content

Advertisement

Log in

Specific mTOR inhibitor rapamycin enhances cytotoxicity induced by alkylating agent 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU) in human U251 malignant glioma cells

  • Lab. Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Loss of the PTEN tumor suppressor gene and amplification of the epidermal growth factor receptor (EGFR), which is common in malignant gliomas, result in activation of the mammalian target of rapamycin (mTOR). Rapamycin is a highly specific inhibitor of mTOR and induces a cytostatic effect in various glioma cell lines. DNA-damaging agents such as nitrosourea are widely used in malignant glioma treatment; therefore, we investigated the effect of rapamycin on cell growth and death in combination with 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU, nimustine hydrochloride) in human glioma cells. In U251 malignant glioma (U251MG) cells, we confirmed that rapamycin enhanced ACNU-induced apoptosis. We found that rapamysin inhibited ACNU-induced p21 induction, and knocking down of p21 protein by siRNA enhanced ACNU-induced apoptosis in U251MG cells. Furthermore, adenovirus-mediated over-expression of p21 protein rescued U251MG cells from apoptosis induced by ACNU and rapamycin. Finally, treatment of intracerebral U251MG xenografts with a combination of rapamycin and ACNU in vivo resulted in statistically prolonged median survival (P < 0.05). These results suggest that rapamycin in combination with DNA-damaging agents may be efficacious in the treatment of malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Behin A, Hoang-Xuan K, Carpentier AF et al (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  2. Reardon DA, Rich JN, Friedman HS et al (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265. Review

    Article  PubMed  CAS  Google Scholar 

  3. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  4. Dutcher JP (2004) Mammalian target of rapamycin inhibition. Clin Cancer Res 10:6382S–6387S

    Article  PubMed  CAS  Google Scholar 

  5. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484. Review

    Article  PubMed  CAS  Google Scholar 

  6. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  7. Shinojima N, Tada K, Shiraishi S et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970

    PubMed  CAS  Google Scholar 

  8. Simmons ML, Lamborn KR, Takahashi M et al (2001) Analysis of complex relationships between age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res 61:1122–1128

    PubMed  CAS  Google Scholar 

  9. Adachi J, Ohbayashi K, Suzuki T et al (1999) Cell cycle arrest and astrocytic differentiation resulting from PTEN expression in glioma cells. J Neurosurg 91:822–830

    Article  PubMed  CAS  Google Scholar 

  10. Ermoian RP, Furniss CS, Lamborn KR et al (2002) Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8:1100–1106

    PubMed  CAS  Google Scholar 

  11. Tanaka M, Koul D, Davies MA et al (2000) MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 19:5406–5412

    Article  PubMed  CAS  Google Scholar 

  12. Vanderweele DJ, Rudin CM (2005) Mammalian target of rapamycin promotes vincristine resistance through multiple mechanisms independent of maintained glycolytic rate. Mol Cancer Res 3:635–644

    Article  PubMed  CAS  Google Scholar 

  13. VanderWeele DJ, Zhou R, Rudin CM (2004) Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Mol Cancer Ther 3:1605–1613

    PubMed  CAS  Google Scholar 

  14. Van Duyne GD, Standaert RF, Schreiber SL et al (1991) Atomic structure of the rapamycin human immunophilin FKBP-12 complex. J Am Chem Soc 113:7433–7434

    Article  Google Scholar 

  15. Vignot S, Faivre S, Aguirre D et al (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525–537

    Article  PubMed  CAS  Google Scholar 

  16. Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3:371–377

    Article  PubMed  CAS  Google Scholar 

  17. Huang S, Liu LN, Hosoi H et al (2001) p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 61:3373–3381

    PubMed  CAS  Google Scholar 

  18. Hosoi H, Dilling MB, Shikata T et al (1999) Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 59:886–894

    PubMed  CAS  Google Scholar 

  19. Shi Y, Gera J, Hu L et al (2002) Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 62:5027–5034

    PubMed  CAS  Google Scholar 

  20. Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346

    PubMed  CAS  Google Scholar 

  21. Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304

    Article  PubMed  CAS  Google Scholar 

  22. Chang SM, Wen P, Cloughesy T et al (2005) North American Brain Tumor Consortium and the National Cancer Institute. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23:357–361

    Article  PubMed  CAS  Google Scholar 

  23. Raymond E, Alexandre J, Faivre S et al (2004) Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 22:2336–2347

    Article  PubMed  CAS  Google Scholar 

  24. Panwalkar A, Verstovsek S, Giles FJ (2004) Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer 100:657–666

    Article  PubMed  CAS  Google Scholar 

  25. Xu Q, Thompson JE, Carroll M (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106:4261–4268

    Article  PubMed  CAS  Google Scholar 

  26. Shi Y, Frankel A, Radvanyi LG et al (1995) Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res 55:1982–1988

    PubMed  CAS  Google Scholar 

  27. Wu C, Wangpaichitr M, Feun L et al (2005) Overcoming cisplatin resistance by mTOR inhibitor in lung cancer. Mol Cancer 4:25–34

    Article  PubMed  CAS  Google Scholar 

  28. Grunwald V, DeGraffenried L, Russel D et al (2002) Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 62:6141–6145

    PubMed  CAS  Google Scholar 

  29. Eshleman JS, Carlson BL, Mladek AC et al (2002) Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res 62:7291–7297

    PubMed  CAS  Google Scholar 

  30. Beuvink I, Boulay A, Fumagalli S et al (2005) The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120:747–759

    Article  PubMed  CAS  Google Scholar 

  31. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  32. Zhang WW, Fang X, Branch CD et al (1993) Generation and identification of recombinant adenovirus by liposome-mediated transfection and PCR analysis. Biotechniques 15:868–872

    PubMed  CAS  Google Scholar 

  33. Eastham JA, Hall SJ, Sehgal I et al (1995) In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 55:5151–5155

    PubMed  CAS  Google Scholar 

  34. Miyake H, Hanada N, Nakamura H et al (1998) Overexpression of Bcl-2 in bladder cancer cells inhibits apoptosis induced by cisplatin and adenoviral-mediated p53 gene transfer. Oncogene 16:933–943

    Article  PubMed  CAS  Google Scholar 

  35. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163. Review

    Article  PubMed  CAS  Google Scholar 

  36. Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70

    Article  PubMed  CAS  Google Scholar 

  37. Nourse J, Firpo E, Flanagan WM et al (1994) Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372:570–573

    Article  PubMed  CAS  Google Scholar 

  38. Vinals F, Chambard JC, Pouyssegur J (1999) p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem 274:26776–26782

    Article  PubMed  CAS  Google Scholar 

  39. Gaben AM, Saucier C, Bedin M et al (2004) Rapamycin inhibits cdk4 activation, p 21(WAF1/CIP1) expression and G1-phase progression in transformed mouse fibroblasts. Int J Cancer 108:200–206

    Article  PubMed  CAS  Google Scholar 

  40. Gao N, Zhang Z, Jiang BH et al (2003) Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 310:1124–1132

    Article  PubMed  CAS  Google Scholar 

  41. Vega F, Medeiros LJ, Leventaki V et al (2006) Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66:6589–6597

    Article  PubMed  CAS  Google Scholar 

  42. Parker SB, Eichele G, Zhang P et al (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027

    Article  PubMed  CAS  Google Scholar 

  43. Blagosklonny MV, Wu GS, Omura S et al (1996) Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227:564–569

    Article  PubMed  CAS  Google Scholar 

  44. Wang X, Omura S, Szweda LI et al (1997) Rapamycin inhibits proteasome activator expression and proteasome activity. Eur J Immunol 27:2781–2786

    Article  PubMed  CAS  Google Scholar 

  45. Shapira M, Kakiashvili E, Rosenberg T et al (2006) The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells. Breast Cancer Res 8:R46

    Article  PubMed  CAS  Google Scholar 

  46. Fan S, Chang JK, Smith ML et al (1997) Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 14:2127–2136

    Article  PubMed  CAS  Google Scholar 

  47. Tian H, Wittmack EK, Jorgensen TJ (2000) p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res 60:679–684

    PubMed  CAS  Google Scholar 

  48. Gorospe M, Wang X, Guyton KZ et al (1996) Protective role of p21(Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells. Mol Cell Biol 16:6654–6660

    PubMed  CAS  Google Scholar 

  49. Gorospe M, Cirielli C, Wang X et al (1997) p21 (Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14:929–935

    Article  PubMed  CAS  Google Scholar 

  50. Liu ZM, Chen GG, Ng EK et al (2004) Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells. Oncogene 23:503–513

    Article  PubMed  CAS  Google Scholar 

  51. Asada M, Yamada T, Ichijo H et al (1999) Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 18:1223–1234

    Article  PubMed  CAS  Google Scholar 

  52. Shim J, Lee H, Park J et al (1996) A non-enzymatic p21 protein inhibitor of stressactivated protein kinases. Nature 381:804–806

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki A, Tsutomi Y, Akahane K et al (1998) Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17: 931–939

    Article  PubMed  CAS  Google Scholar 

  54. Kondo S, Barna BP, Kondo Y et al (1996) WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis. Oncogene 13:1279–1285

    PubMed  CAS  Google Scholar 

  55. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28:727–732

    CAS  Google Scholar 

  56. Easton JB, Houghton PJ (2006) mTOR and cancer therapy. Oncogene 25:6436–6446. Review

    Article  PubMed  CAS  Google Scholar 

  57. Reardon DA, Quinn JA, Vredenburgh JJ et al (2006) Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 12:860–868

    Article  PubMed  CAS  Google Scholar 

  58. Doherty L, Gigas DC, Kesari S et al (2006) Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 67:156–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research to Eiji Kohmura (15659337), Atsufumi Kawamura (16591440), and Takashi Sasayama (17790968) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

We are grateful to Hideyuki Saya (Kumamoto University, Kumamoto, Japan), for valuable suggestions on various analyses. We would like to thank Ayumi Katoh and Nami Takase for technical assistance in the Western blot assays and in vivo experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Sasayama, T., Mizukawa, K. et al. Specific mTOR inhibitor rapamycin enhances cytotoxicity induced by alkylating agent 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU) in human U251 malignant glioma cells. J Neurooncol 84, 233–244 (2007). https://doi.org/10.1007/s11060-007-9371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9371-x

Keywords

Navigation