Skip to main content

Advertisement

Log in

Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines

  • Lab Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The transplantation of progenitor cells is a promising new approach for the treatment of gliomas. Marrow stromal cells (MSC) are possible candidates for such a cell-based therapy, since they are readily and autologously available and show an extensive tropism to gliomas in vitro and in vivo. However, the signals that guide the MSC are still poorly understood. In this study, we show that gliomas have the capacity to actively attract MSC by secreting a multitude of angiogenic cytokines. We demonstrate that interleukin-8 (IL-8), transforming growth factor-ß1 (TGF-ß1) and neurotrophin-3 (NT-3) contribute to this glioma-directed tropism of human MSC. Together with the finding that vascular endothelial growth factor (VEGF) is another MSC-attracting factor secreted by glioma cells, these data support the hypothesis that gliomas use their angiogenic pathways to recruit mesenchymal progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sathornsumetee S, Rich J (2006) New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 6:1087–1104

    Article  PubMed  CAS  Google Scholar 

  2. Aboody K, Brown A, Rainov N, Bower K, Liu S, Yang W, Small J, Herrlinger U, Ourednik V, Black P, Breakefield X, Snyder E (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851

    Article  PubMed  CAS  Google Scholar 

  3. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn J, Goldbrunner R (2006) Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199:301–310

    Article  PubMed  CAS  Google Scholar 

  4. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang F (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    PubMed  CAS  Google Scholar 

  5. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164

    Article  PubMed  CAS  Google Scholar 

  6. Kargiotis O, Rao J, Kyritsis A (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78:281–293

    Article  PubMed  CAS  Google Scholar 

  7. Hamel W, Westphal M, Szönyi E, Escandón E, Nikolics K (1993) Neurotrophin gene expression by cell lines derived from human gliomas. J Neurosci Res 34:147–157

    Article  PubMed  CAS  Google Scholar 

  8. Donovan M, Miranda R, Kraemer R, McCaffrey T, Tessarollo L, Mahadeo D, Sharif S, Kaplan D, Tsoulfas P, Parada L (1995) Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol 147:309–324

    PubMed  CAS  Google Scholar 

  9. Weis J, Schönrock L, Züchner S, Lie D, Sure U, Schul C, Stögbauer F, Ringelstein E, Halfter H (1999) CNTF and its receptor subunits in human gliomas. J Neurooncol 44:243–253

    Article  PubMed  CAS  Google Scholar 

  10. Wiesenhofer B, Stockhammer G, Kostron H, Maier H, Hinterhuber H, Humpel C (2000) Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-alpha 1) are strongly expressed in human gliomas. Acta Neuropathol (Berl) 99:131–137

    Article  CAS  Google Scholar 

  11. Yamauchi J, Chan J, Shooter E (2003) Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci U S A 100:14421–14426

    Article  PubMed  CAS  Google Scholar 

  12. Padovan C, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A (2003) Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant 12:839–848

    PubMed  Google Scholar 

  13. Tabatabai G, Bähr O, Möhle R, Eyüpoglu I, Boehmler A, Wischhusen J, Rieger J, Blümcke I, Weller M, Wick W (2005) Lessons from the bone marrow: how malignant glioma cells attract adult haematopoietic progenitor cells. Brain 128:2200–2211

    Article  PubMed  Google Scholar 

  14. Von Lüttichau I, Notohamiprodjo M, Wechselberger A, Peters C, Henger A, Seliger C, Djafarzadeh R, Huss R, Nelson P (2005) Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev 14:329–336

    Article  Google Scholar 

  15. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek A, Silberstein L (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  PubMed  CAS  Google Scholar 

  16. Sordi V, Malosio M, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone B, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    Article  PubMed  CAS  Google Scholar 

  17. Son B, Marquez-Curtis L, Kucia M, Wysoczynski M, Turner A, Ratajczak J, Ratajczak M, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Li Y, Chen X, Chen J, Gautam S, Xu Y, Chopp M (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117

    Article  PubMed  CAS  Google Scholar 

  19. Charalambous C, Pen L, Su Y, Milan J, Chen T, Hofman F (2005) Interleukin-8 differentially regulates migration of tumor-associated and normal human brain endothelial cells. Cancer Res 65:10347–10354

    Article  PubMed  CAS  Google Scholar 

  20. Desbaillets I, Diserens A, de Tribolet N, Hamou M, Van Meir E (1999) Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18:1447–1456

    Article  PubMed  CAS  Google Scholar 

  21. Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410

    Article  PubMed  CAS  Google Scholar 

  22. Brat D, Bellail A, Van Meir E (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    Article  PubMed  CAS  Google Scholar 

  23. Silva G, Litovsky S, Assad J, Sousa A, Martin B, Vela D, Coulter S, Lin J, Ober J, Vaughn W, Branco R, Oliveira E, He R, Geng Y, Willerson J, Perin E (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  PubMed  CAS  Google Scholar 

  24. Li Y, Chen J, Zhang C, Wang L, Lu D, Katakowski M, Gao Q, Shen L, Zhang J, Lu M, Chopp M (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417

    Article  PubMed  Google Scholar 

  25. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam S, Chopp M (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    Article  PubMed  CAS  Google Scholar 

  26. Tille J, Pepper M (2002) Mesenchymal cells potentiate vascular endothelial growth factor-induced angiogenesis in vitro. Exp Cell Res 280:179–191

    Article  PubMed  CAS  Google Scholar 

  27. Majumdar M, Banks V, Peluso D, Morris E (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106

    Article  PubMed  CAS  Google Scholar 

  28. Reyes M, Verfaillie C (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci 938:231–233

    Article  PubMed  CAS  Google Scholar 

  29. Conget P, Minguell J (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  PubMed  CAS  Google Scholar 

  30. De Ugarte D, Alfonso Z, Zuk P, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick M, Fraser J (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Förderprogramm für Forschung und Lehre, LMU Munich, Germany, and by grants of the Friedrich-Baur-Stiftung, Munich, Germany. Parts of this work are elements of one co-author´s dissertation (Julia Roider) presented to the Medical Faculty, LMU Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Birnbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnbaum, T., Roider, J., Schankin, C.J. et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83, 241–247 (2007). https://doi.org/10.1007/s11060-007-9332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9332-4

Keywords

Navigation