Skip to main content

Advertisement

Log in

Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The discoidin domain receptor-1 (DDR1) tyrosine kinases are a family of cell surface receptors that bind to several types of collagen and facilitate cell adhesion that is known association with several cancers. However, no previous study has examined the expression and function of DDR1 in pituitary adenoma. Tissue microarray analysis of DDR1 expression levels in 52 pituitary adenoma tissues revealed that DDR1 expression was significantly related to hormonal background (Kruskal–Wallis test; P < 0.0001). To further elucidate the function of DDR1 in pituitary adenoma, we developed DDR1 over- and under-expressing cell lines using DDR1 clone transfection and short interfering ribonucleic acids (siRNA)-based DDR1 gene silencing, respectively, in a human pituitary adenoma cell line (HP-75). Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting confirmed that expression of both DDR1 isoforms (DDR1a and DDR1b) was elevated by clone transfection and diminished by siRNA. Matrigel invasion assays revealed that cell invasion was increased in HP-75 cells over-expressing DDR1 and decreased in cells under-expressing DDR1. Consistent with this, zymography revealed that the activation levels of matrix metalloproteinase (MMP)-2 and -9 were increased and decreased in cells over- and under-expressing DDR1, respectively. Examination of in vitro cell adhesion to collagen types I, II, III, and IV with respect to MMP-2 and -9 expression revealed that DDR1 regulated cell adhesion to collagen type I, which was responsible for accelerating secretion of MMP-2 and -9 in DDR1 over-expressing cells. Taken together, these results strongly suggest that DDR1 mediates cell invasion-related signaling between collagen type I and MMP-2 and -9 in pituitary adenoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watanabe M, Fujioka-Kaneko Y, Kobayashi H, Kiniwa M, Kuwano M, Basaki Y (2005) Involvement of integrin-linked kinase in capillary/tube-like network formation of human vascular endothelial cells. Biol Proced Online 7:41–47

    Article  PubMed  CAS  Google Scholar 

  2. Liu W, Kunishio K, Matsumoto Y, Okada M, Nagao S (2005) Matrix metalloproteinase-2 expression correlates with cavernous sinus invasion in pituitary adenomas. J Clin Neurosci 12:791–794

    Article  PubMed  CAS  Google Scholar 

  3. Pan LX, Chen ZP, Liu YS, Zhao JH (2005) Magnetic resonance imaging and biological markers in pituitary adenomas with invasion of the cavernous sinus space. J Neurooncol 74:71–76

    Article  PubMed  Google Scholar 

  4. Turner HE, Nagy Z, Esiri MM, Harris AL, Wass JA (2000) Role of matrix metalloproteinase 9 in pituitary tumor behavior. J Clin Endocrinol Metab 85:2931–2935

    Article  PubMed  CAS  Google Scholar 

  5. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Article  PubMed  CAS  Google Scholar 

  6. Munoz-Najar UM, Neurath KM, Vumbaca F, Claffey KP (2006) Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25:2379–2392

    Article  PubMed  CAS  Google Scholar 

  7. Zalewska T, Makarewicz D, Janik B, Ziemka-Nalecz M (2005) Neonatal cerebral hypoxia-ischemia: involvement of FAK-dependent pathway. Int J Dev Neurosci 23:657–662

    Article  PubMed  CAS  Google Scholar 

  8. Muenzner P, Rohde M, Kneitz S, Hauck CR (2005) CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. J Cell Biol 170:825–836

    Article  PubMed  CAS  Google Scholar 

  9. Labat-Robert J, Robert L (2005) Introduction: matrix biology in the 21st century. From a static-rheological role to a dynamic-signaling function. Pathol Biol (Paris) 53:369–371

    Google Scholar 

  10. Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Manes S, Bruckner K, Goergen JL, Lemke G, Yancopoulos G, Angel P, Martinez C, Klein R (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2:446–452

    PubMed  CAS  Google Scholar 

  11. Tran KT, Griffith L, Wells A (2004) Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen 12:262–268

    Article  PubMed  Google Scholar 

  12. Vogel WF, Aszodi A, Alves F, Pawson T (2001) Discoidin domain receptor-1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917

    Article  PubMed  CAS  Google Scholar 

  13. Matsuyama W, Watanabe M, Shirahama Y, Oonakahara K, Higashimoto I, Yoshimura T, Osame M, Arimura K (2005) Activation of discoidin domain receptor 1 on CD14-positive bronchoalveolar lavage fluid cells induces chemokine production in idiopathic pulmonary fibrosis. J Immunol 174:6490–6498

    PubMed  CAS  Google Scholar 

  14. Jonsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 114:2043–2053

    PubMed  CAS  Google Scholar 

  15. Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23

    Article  PubMed  CAS  Google Scholar 

  16. Peker S, Kurtkaya-Yapicier O, Kilic T, Pamir MN (2005) Microsurgical anatomy of the lateral walls of the pituitary fossa. Acta Neurochir (Wien) 147:641–648; discussion 649

    Article  CAS  Google Scholar 

  17. Kim KC, Lee CH (2005) MAP kinase activation is required for the MMP-9 induction by TNF-stimulation. Arch Pharm Res 28:1257–1262

    Article  PubMed  CAS  Google Scholar 

  18. Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33:1469–1490

    Article  PubMed  Google Scholar 

  19. van Wichert G, Sheetz MP (2005) Mechanisms of disease:the biophysical interpretation of the ECM affects physiological and pathophysiological cellular behavior. Z Gastroenterol 43:1329–1336

    Article  CAS  Google Scholar 

  20. Jadlowiec JA, Zhang X, Li J, Campbell PG, Sfeir C (2005) ECM-mediated signaling by dentin phosphophoryn involves activation of the Smad pathway independent of BMP. J Biol Chem, DOI: 10.1074/jbc.M506158200

  21. Ahmed N, Riley C, Rice G, Quinn M (2005) Role of integrin receptors for fibronectin, collagen and laminin in the regulation of ovarian carcinoma functions in response to a matrix microenvironment. Clin Exp Metastasis 22:391–402

    Article  PubMed  CAS  Google Scholar 

  22. Luo J (2005) The role of matrix metalloproteinases in the morphogenesis of the cerebellar cortex. Cerebellum 4:239–245

    Article  PubMed  CAS  Google Scholar 

  23. Peng PL, Hsieh YS, Wang CJ, Hsu JL, Chou FP (2006) Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol 214:8–15

    Article  PubMed  CAS  Google Scholar 

  24. Ith B, Wei J, Yet SF, Perrella MA, Layne MD (2005) Aortic carboxypeptidase-like protein is expressed in collagen-rich tissues during mouse embryonic development. Gene Expr Patterns 5:533–537

    Article  PubMed  CAS  Google Scholar 

  25. Leufgen H, Bihl MP, Rudiger JJ, Gambazzi J, Perruchoud AP, Tamm M, Roth M (2005) Collagenase expression and activity is modulated by the interaction of collagen types, hypoxia, and nutrition in human lung cells. J Cell Physiol 204:146–154

    Article  PubMed  CAS  Google Scholar 

  26. Armelin-Correa LM, Lin CJ, Barbosa A, Bagatini K, Winnischofer SM, Sogayar MC, Passos-Bueno MR (2005) Characterization of human Collagen XVIII promoter 2: interaction of Sp1, Sp3, and YY1 with the regulatory region and a SNP that increases transcription in hepatocytes. Matrix Biol 24:550–559

    Article  PubMed  CAS  Google Scholar 

  27. Sener G, Kabasakal L, Yuksel M, Gedik N, Alican Y (2005) Hepatic fibrosis in biliary-obstructed rats is prevented by Ginkgo biloba treatment. World J Gastroenterol 11:5444–5449

    PubMed  Google Scholar 

  28. Spee B, Penning LC, van den Ingh TS, Arends B, Ijzer J, van Sluijs FJ, Rothuizen J (2005) Regenerative and fibrotic pathways in canine hepatic portosystemic shunt and portal vein hypoplasia, new models for clinical hepatocyte growth factor treatment. Comp Hepatol 4:7

    Article  PubMed  CAS  Google Scholar 

  29. Kuchenbauer F, Hopfner U, Stalla J, Arzt E, Stalla GK, Paez-Pereda M (2001) Extracellular matrix components regulate ACTH production and proliferation in corticotroph tumor cells. Mol Cell Endocrinol 175:141–148

    Article  PubMed  CAS  Google Scholar 

  30. Steusloff K, Rocken C, Saeger W (1998) Basement membrane proteins, apolipoprotein E and glycosaminoglycans in pituitary adenomas and their correlation to amyloid. Virchows Arch 433:29–34

    Article  PubMed  CAS  Google Scholar 

  31. Naganuma H, Satoh E, Nukui H (2002) Technical considerations of transsphenoidal removal of fibrous pituitary adenomas and evaluation of collagen content and subtype in the adenomas. Neurol Med Chir (Tokyo) 42:202–212; discussion 213

    Article  Google Scholar 

  32. Ludwig T (2005) Local proteolytic activity in tumor cell invasion and metastasis. Bioessays 27:1181–1191

    Article  PubMed  CAS  Google Scholar 

  33. Rennebeck G, Martelli M, Kyprianou N (2005) Anoikis and survival connections in the tumor microenvironment: is there a role in prostate cancer metastasis? Cancer Res 65:11230–11235

    Article  PubMed  CAS  Google Scholar 

  34. Kuchenbauer F, Theodoropoulou M, Hopfner U, Stalla J, Renner U, Tonn JC, Low MJ, Arzt E, Stalla GK, Paez-Pereda M (2003) Laminin inhibits lactotroph proliferation and is reduced in early prolactinoma development. Mol Cell Endocrinol 207:13–20

    Article  PubMed  CAS  Google Scholar 

  35. Ram R, Lorente G, Nikolich K, Urfer R, Foehr E, Nagavarapu U (2005) Discoidin Domain Receptor-1a (DDR1a) Promotes Glioma Cell Invasion and Adhesion in Association with Matrix Metalloproteinase-2. J Neurooncol, DOI: 10.1007/s11060-005-6874-1

  36. Wall SJ, Werner E, Werb Z, DeClerck YA (2005) Discoidin domain receptor 2 mediates tumor cell cycle arrest induced by fibrillar collagen. J Biol Chem 280:40187–40194

    Article  PubMed  CAS  Google Scholar 

  37. Li W, Zhang YQ, Liu XP, Yao LB, Sun L (2005) Regular expression of discoidin domain receptor 2 in the improved adjuvant-induced animal model for rheumatoid arthritis. Chin Med Sci J 20:133–137

    PubMed  CAS  Google Scholar 

  38. Yanaihara A, Otsuka Y, Iwasaki S, Aida T, Tachikawa T, Irie T, Okai T (2005) Differences in gene expression in the proliferative human endometrium. Fertil Steril 83(Suppl 1):1206–1215

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Hoshijima M, Lam J, Zhou Z, Jokiel A, Dalton ND, Hultenby K, Ruiz-Lozano P, Ross J Jr, Tryggvason K, Chien KR (2006) Cardiomyopathy associated with microcirculation dysfunction in laminin alpha 4 chain deficient mice. J Biol Chem 281(1):213–220

    Google Scholar 

  40. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry J, Scolyer RA, Davies MJ, Heinzelmann M, Kalish LH, Bali A, Kench JG, Edwards LS, Vanden Bergh PM, Hacker NF, Sutherland RL, O’Brien PM (2004) Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin Cancer Res 10:4427–4436

    Article  PubMed  CAS  Google Scholar 

  41. Dejmek J, Leandersson K, Manjer J, Bjartell A, Emdin SO, Vogel WF, Landberg G, Andersson T (2005) Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res 11:520–528

    PubMed  CAS  Google Scholar 

  42. Koo DH, McFadden C, Huang Y, Abdulhussein R, Friese-Hamim M, Vogel WF (2006) Pinpointing phosphotyrosine-dependent interactions downstream of the collagen receptor DDR1. FEBS Lett 580:15–22

    Article  PubMed  CAS  Google Scholar 

  43. Leitinger B, Steplewski A, Fertala A (2004) The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 344:993–1003

    Article  PubMed  CAS  Google Scholar 

  44. Matsuyama W, Mitsuyama H, Watanabe M, Shirahama Y, Higashimoto I, Osame M, Arimura K (2005) Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol 33:565–573

    Article  PubMed  CAS  Google Scholar 

  45. Hou G, Vogel WF, Bendeck MP (2002) Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression. Circ Res 90:1147–1149

    Article  PubMed  CAS  Google Scholar 

  46. Hou G, Vogel W, Bendeck MP (2001) The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 107:727–735

    Article  PubMed  CAS  Google Scholar 

  47. Sakamoto O, Suga M, Suda T, Ando M (2001) Expression of discoidin domain receptor 1 tyrosine kinase on the human bronchial epithelium. Eur Respir J 17:969–974

    Article  PubMed  CAS  Google Scholar 

  48. Vogel W, Brakebusch C, Fassler R, Alves F, Ruggiero F, Pawson T (2000) Discoidin domain receptor 1 is activated independently of beta(1) integrin. J Biol Chem 275:5779–5784

    Article  PubMed  CAS  Google Scholar 

  49. Matsuyama W, Wang L, Farrar WL, Faure M, Yoshimura T (2004) Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: role of p38 mitogen-activated protein kinase and NF-kappa B. J Immunol 172:2332–2340

    PubMed  CAS  Google Scholar 

  50. Matsuyama W, Faure M, Yoshimura T (2003) Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-beta-activated protein kinase 1 binding protein 1 beta/p38 alpha mitogen-activated protein kinase signaling cascade. J Immunol 171:3520–3532

    PubMed  CAS  Google Scholar 

  51. Weiner HL, Huang H, Zagzag D, Boyce H, Lichtenbaum R, Ziff EB (2000) Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors. Neurosurgery 47:1400–1409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (No. 15390445 and No. 17591536) and by Grants in Aid from the Ministry of Health, Labor and Welfare of Japan, for Cancer Research (17–21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daizo Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, D., Teramoto, A. Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1. J Neurooncol 82, 29–40 (2007). https://doi.org/10.1007/s11060-006-9246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9246-6

Keywords

Navigation