Skip to main content

Advertisement

Log in

Human glioblastoma biopsy spheroids xenografted into the nude rat brain show growth inhibition after stereotactic radiosurgery

  • LAB INVESTIGATION
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

The Gamma Knife is currently used to boost treatment of malignant gliomas. However, few experimental studies have focused on its radiobiological effects. In this work, the growth and invasiveness of human glioblastoma spheroids xenografted into nude rat brains were assessed after radiosurgery. Temporary in vitro as well as long-term in vivo radiation effects were studied.

Methods

Glioblastoma biopsy spheroids were irradiated with 12 or 24 Gy. Short-term in vitro spheroid viability and tumour cell migration was determined by microscopic techniques. Pre-irradiated glioblastoma spheroids were implanted into brains of immunosuppressed rats. Long-term tumour development was assessed by magnetic resonance (MR) imaging, and animal survival was recorded. An immunohistochemical analysis was performed on the sectioned rat brains.

Results

Both un-irradiated and irradiated spheroids remained viable during 2 months in culture, but a dose-dependent inhibition of tumour growth and migration was seen. MR imaging 4 weeks after implantation also showed a dose-dependent inhibition in tumour development. Median animal survival times were 25.5 days (control group), 43 days (12 Gy group) and 96 days (24 Gy group). The study of in vivo long-term radiation effects on the remaining viable tumour population showed no difference in Ki-67 labelling index and microvascular density before and after radiosurgery.

Conclusions

A dose-dependent inhibition of tumour growth and invasion, as well as a dose-dependent increase in animal survival was observed. The model system described is well suited for assessing the radiobiological effects of Gamma Knife radiosurgery. The results indicate that radiosurgery of malignant gliomas might be effective in controlling tumour progression in selected glioblastoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Saway R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  PubMed  CAS  Google Scholar 

  2. Walter MD, Strike TA, Sheline GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    Google Scholar 

  3. Walter MD, Alexander E, Hunt WE (1978) Evaluation of BCNU and/or radiation therapy in the treatment of anaplastic gliomas. J Neurosurg 49:333–343

    Google Scholar 

  4. Ganz JC, Smievoll AI, Thorsen F (1994) Radiosurgical treatment of gliomas of the diencephalons. Acta Neurochir Suppl (Wien) 62:62–66

    CAS  Google Scholar 

  5. Larson D, Prados M, Lamborn KR, Smith W, Sneed PK, Chang S, Nicholas KM, Wara WM, Devriendt D, Kunwar S, Berger M, McDermott MW (2002) Phase II study of high central dose Gamma Knife radiosurgery and Marimastat in patients with recurrent malignant glioma. Int J Radiat Oncol Biol Phys 54:1397–1404

    Article  PubMed  Google Scholar 

  6. Nwokedi EC, DiBiase SJ, Jabbour S, Herman J, Amin P, Chin LS (2002) Gamma Knife stereotactic radiosurgery for patients with glioblastoma multiforme. Neurosurgery 50:41–46

    Article  PubMed  Google Scholar 

  7. Cho KH, Hall WA, Lo SS, Dusenberry KE (2004) Stereotactic radiosurgery versus fractionated radiotherapy boost for patients with glioblastoma multiforme. Technol Cancer Res Treat 3:41–49

    PubMed  Google Scholar 

  8. Combs SE, Widmer V, Thilmann C, Hof H, Debus J, Schulz-Ertner D (2005) Stereotactic radiosurgery (SRS): treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168–2173

    Article  PubMed  Google Scholar 

  9. Hsieh PC, Chandler JP, Bhangoo S, Panagiotopoulos K, Kalapurkal JA, Marymont MH, Cozzens JW, Levy RM, Salehi S (2005) Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 57:684–692

    Article  PubMed  Google Scholar 

  10. Mahajan A, McCutcheon IE, Suki D, Chang EL, Hassenbusch SJ, Weinberg JS, Shiu A, Maor MH, Woo SY (2005) Case-control study of stereotactic radiosurgery for recurrent glioblastoma multiforme. J Neurosurg 103:210–217

    PubMed  Google Scholar 

  11. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: Invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  PubMed  CAS  Google Scholar 

  12. Thorsen F, Tysnes BB (1997) Brain tumor cell invasion, anatomical and biological considerations. Anticancer Res 17:4121–4126

    PubMed  CAS  Google Scholar 

  13. Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME (1996) Dichotomy of astrocytoma migration and proliferation. Int J Cancer 67:275–282

    Article  PubMed  CAS  Google Scholar 

  14. McDonough W, Tran N, Giese A, Norman SA, Berens ME (1998) Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase. J Neuropathol Exp Neurol 55:449–455

    Google Scholar 

  15. Kim JH, Khil MS, Kolozsvary A, Gutierrez JA, Brown SL (1999) Fractionated radiosurgery for 9L gliosarcoma in the rat brain. Int J Radiat Oncol Biol Phys 45:1035–1040

    Article  PubMed  CAS  Google Scholar 

  16. Kondziolka D, Lunsford LD, Claassen D, Pandalai S, Maitz AH, Flickinger JC (1992) Radiobiology of radiosurgery: Part II. The rat C6 glioma model. Neurosurgery 31:280–287

    Article  PubMed  CAS  Google Scholar 

  17. Liotta LA (1986) Tumor invasion and metastases: role of the extracellular matrix-Rhoads memorial Award Lecture. Cancer Res 46:1–7

    Article  PubMed  CAS  Google Scholar 

  18. Mahesparan R, Tysnes BB, Read TA, Enger PO, Bjerkvig R, Lund-Johansen M (1999) Extracellular matrix-induced cell migration from glioblastoma biopsy specimens in vitro. Acta Neuropathol 97:231–239

    Article  PubMed  CAS  Google Scholar 

  19. Thorsen F, Ersland L, Nordli H, Enger PO, Huszthy PC, Lundervold A, Standnes T, Bjerkvig R, Lund-Johansen M (2003) Imaging of experimental rat gliomas using a clinical MR scanner. J Neuro-Oncol 63:225–231

    Article  Google Scholar 

  20. Taghian A, DuBois W, Budach W, Baumann M, Freeman J, Suit H (1995) In vivo radiation sensitivity of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 32:99–104

    Article  PubMed  CAS  Google Scholar 

  21. Kaaijk P, Troost D, Sminia P, Hulshof MC, van der Kracht AH, Leenstra S, Bosch DA (1997) Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas. Eur J Cancer 33:645–651

    Article  PubMed  CAS  Google Scholar 

  22. McIlwrath AJ, Vasey PA, Ross GM, Brown R (1994) Cell cycle arrest and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 54:3718–3722

    PubMed  CAS  Google Scholar 

  23. Fehlauer F, Stalpers LJ, Panayiotides J, Kaaijk P, Gonzalez Gonzalez D, Leenstra S, Van Der Valk P, Sminia P (2004) Effect of single dose irradiation on human glioblastoma spheroids in vitro. Oncol Rep 11:477–485

    PubMed  Google Scholar 

  24. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci 89:7491–7495

    Article  PubMed  CAS  Google Scholar 

  25. Bauman GS, Fisher BJ, McDonald W, Amberger VR, Moore E, Del Maestro RF (1999) Effects of radiation on a three-dimensional model of malignant glioma invasion. Int J Develop Neurosci 17:643–651

    Article  CAS  Google Scholar 

  26. Gliemroth J, Feyerabend T, Gerlach C, Arnold H, Terzis AJ (2003) Proliferation, migration, and invasion of human glioma cells exposed to fractionated radiotherapy in vitro. Neurosurg Rev 26:198–205

    Article  PubMed  Google Scholar 

  27. Cordes N, Hansmeier B, Beinke C, Meineke V, van Beuningen D (2003) Irradiation differently affects substratum-dependent survival, adhesion and invasion of glioblastoma cell lines. Br J Cancer 89:2122–2132

    Article  PubMed  CAS  Google Scholar 

  28. Mahesparan R, Read TA, Lund-Johansen M, Skaftnesmo KO, Bjerkvig R, Engebraaten O (2003) Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol (Berl) 105:49–57

    CAS  Google Scholar 

  29. Sminia P, Acker H, Eikesdal HP, Kaaijk P, Enger P, Slotman B, Bjerkvig R (2003) Oxygenation and response to irradiation of organotypic multicellular spheroids of human glioma. Anticancer Res 23:1461–1466

    PubMed  Google Scholar 

  30. Souhami L, Seiferheld W, Brachman D, Podgorsak EB, Werner-Wasik M, Lustig R, Schultz CJ, Sause W, Okunieff P, Buckner J, Zamorano L, Mehta MP, Curran WJ Jr (2004) Randomised comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93–05 protocol. Int J Radiat Oncol Biol Phys 60:853–860

    Article  PubMed  Google Scholar 

  31. Engebraaten O, Schwachenwald R, Valen H, Bjerkvig R, Laerum OD, Backlund EO (1992) Effects of high and low single dose irradiation on glioma spheroid invasion into normal rat brain tissue in vitro. Anticancer Res 12:1501–1506

    PubMed  CAS  Google Scholar 

  32. Kleynen CE, Stoter TR, Tadema TM, Stalpers LJ, Dirven CM, Leenstra S, Van Der Valk P, Slotman BJ, Sminia P (2003) The effects of radiation on cell migration from glioblastoma multiforme biopsy spheroids. Anticancer Res 23:4907–4912

    PubMed  CAS  Google Scholar 

  33. Khil MS, Kolozsvary A, Apple M, Kim JH (2000) Increased tumor cures using combined radiosurgery and BCNU in the treatment of 9L glioma in the rat brain. Int J Radiat Oncol Biol Phys 47:511–516

    Article  PubMed  CAS  Google Scholar 

  34. Kodera T, Kubota T, Kabuto M, Nakagawa T, Takeuchi H, Arishima H, Sato K, Kobayashi H, Kitabayashi M, Hirose S (2000) Analysis of the proliferative potential of tumor cells after stereotactic radiosurgery for recurrent astrocytic tumors. Neurol Res 22:802–808

    PubMed  CAS  Google Scholar 

  35. Szeifert GT, Massager N, Levivier M (2002) Morphological redifferentiation in a malignant astrocytoma after Gamma Knife radiosurgery. J Neurosurg 97:627–630

    Article  PubMed  Google Scholar 

  36. Carlsson J, Nederman T (1992) Tumor spheroids as a model in studies of drug effects. In: Bjerkvig R (eds) Spheroid culture in cancer research. CRC Press Inc., Boca Raton, FL, pp 199–216

    Google Scholar 

  37. Rampling R, Cruickshank G, Lewis AD, Fitzsimmons SA, Workman P (1994) Direct measurement of pO2 distribution and bioreactive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 29:427–431

    PubMed  CAS  Google Scholar 

  38. Eley KW, Benedict SH, Chung TDK, Kavanagh BD, Broaddus WC, Schmidt-Ullrich RKA, Lin PS (2002) The effects of pentoxifylline on the survival of human glioma cells with continous and intermittent stereotactic radiosurgery irradiation. Int J Radiat Oncol Biol Phys 54:542–550

    Article  PubMed  CAS  Google Scholar 

  39. Kondziolka D, Somaza S, Martinez AJ, Jacobsohn J, Maitz A, Lunsford LD, Flickinger JC (1997) Radioprotective effects of the 21-aminosteroid U-74389G for stereotactic radiosurgery. Neurosurgery 41:203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Norwegian Cancer Society, The Norwegian Research Council and fundings from Elekta Instrument AB (Stockholm, Sweden). The study has also been financially supported by the sixth EU Framework Programme (Integrated Project ‘Angiotargeting’; contract no 504743) in the area of ‘Life sciences, genomics and biotechnology for health.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frits Thorsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorsen, F., Enger, P.Ø., Wang, J. et al. Human glioblastoma biopsy spheroids xenografted into the nude rat brain show growth inhibition after stereotactic radiosurgery. J Neurooncol 82, 1–10 (2007). https://doi.org/10.1007/s11060-006-9240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9240-z

Keywords

Navigation